Skeleton-Bones 开源项目教程
项目介绍
Skeleton-Bones 是一个由 Eudy Contreras 开发的 GitHub 存储库,旨在提供一套轻量级且易于集成的骨架屏幕(Skeleton Screens)解决方案。骨架屏幕是一种在页面内容加载之前显示的占位符布局,能够提升用户体验,让应用或网站在数据加载期间看起来更自然流畅。本项目特别适合那些追求过渡效果和希望改善用户等待时间感知的开发者。
项目快速启动
要开始使用 Skeleton-Bones,您首先需要将其克隆到本地或者直接通过 npm 安装到您的项目中。
环境准备
确保您的开发环境已安装 Node.js 和 npm。
克隆或安装
通过 Git 克隆
git clone https://github.com/EudyContreras/Skeleton-Bones.git
或者通过 npm 安装
如果您想将它作为一个依赖添加到现有项目中:
npm install skeleton-bones --save
引入并使用
在您的 JavaScript 文件中引入 Skeleton-Bones,并简单地创建一个骨架屏幕实例。
import { SkeletonTheme } from 'skeleton-bones';
// 使用默认主题
const mySkeleton = new SkeletonTheme();
// 或自定义配置
const customSkeleton = new SkeletonTheme({
backgroundColor: '#f3f3f3',
highlightColor: '#ffffff'
});
// 在 DOM 中应用骨架屏元素
document.body.appendChild(mySkeleton.render());
请注意,具体的导入方式和用法可能会根据项目的构建系统和 Skeleton-Bones 的实际API有所不同,请参考最新的官方文档进行调整。
应用案例和最佳实践
应用 Skeleton-Bones 的最佳实践是在页面的关键渲染路径上,特别是在异步数据加载场景下。例如,在列表视图、文章概览或任何动态内容加载之前展示骨架屏。这样可以即时反馈给用户,告知其内容正在加载,减少用户的不确定性和焦虑感。
async function fetchAndDisplayContent() {
showSkeleton(); // 显示骨架屏
const content = await fetchData(); // 模拟数据获取
hideSkeleton(); // 隐藏骨架屏
displayContent(content); // 展示实际内容
}
function showSkeleton() {
// 使用Skeleton-Bones的API显示骨架屏
}
function hideSkeleton() {
// 根据实际实现隐藏或移除骨架屏
}
典型生态项目
Skeleton-Bones 可以广泛应用于多种类型的Web项目中,特别是单页应用程序(SPA)和具有大量动态内容的Web应用。结合React、Vue或Angular等现代前端框架时,它能更好地展现过渡效果,提高用户体验。虽然这个开源项目本身可能没有特定列出生态关联项目,但它的通用性使得它成为任何前端框架实现骨架屏效果的一个良好选择。
为了进一步的集成和高级应用,建议查看 Skeleton-Bones 的官方文档,了解其提供的全部特性和高级定制选项,以便于在特定项目中的高效利用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00