TiDB.AI项目中的HTTP调用优化:从网络请求到函数调用的演进
在分布式系统架构中,服务间通信方式的选择直接影响着系统的性能和可维护性。TiDB.AI项目近期完成了一项重要的架构优化:将原本通过HTTP协议与autoflow服务器的通信方式,改为了更高效的函数直接调用方式。这个看似简单的改动背后,蕴含着分布式系统设计的深层考量。
传统HTTP通信虽然具有通用性强、跨语言等优势,但在同技术栈的服务间通信时,会带来不必要的性能开销。每次请求都需要经过序列化、网络传输、反序列化等步骤,不仅增加了延迟,还消耗了额外的CPU和内存资源。特别是在AI工作流这种需要频繁交互的场景中,这些开销会被放大。
函数直接调用的优势主要体现在三个方面:首先,消除了网络层开销,通信延迟从毫秒级降到微秒级;其次,减少了序列化/反序列化的CPU消耗;最后,代码结构更加清晰,开发者可以直接调用方法而不需要处理HTTP请求的构造和解析。
这个优化特别适合TiDB.AI这类对性能敏感的系统。AI工作流通常需要快速迭代和大量计算,减少通信开销意味着可以更快地完成模型训练和推理任务。同时,由于autoflow服务与调用方同属一个技术生态,采用函数调用也不会牺牲跨语言兼容性。
从工程实践角度看,这种优化需要特别注意服务边界清晰度的保持。虽然改为函数调用,但服务间的接口契约仍然需要明确定义,避免出现紧耦合。良好的接口设计应当使调用方式可以灵活切换,未来如果需要将服务拆分部署,也能较容易地改回HTTP通信。
这个架构决策体现了TiDB.AI团队对性能优化的持续追求,也展示了在云原生时代,我们既需要考虑服务解耦,也要在适当场景追求极致性能的平衡之道。对于其他类似项目,这个案例提供了很好的参考:当服务部署在同一进程或主机时,优先考虑更高效的通信方式;当需要跨节点或跨语言时,再考虑网络协议。
随着TiDB.AI项目的持续发展,这类架构优化将帮助系统更好地支撑复杂的AI工作流,为用户提供更快速、更稳定的服务体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00