LMMs-Eval项目v0.3.2版本发布:多模态大模型评估工具再升级
LMMs-Eval是一个专注于多模态大语言模型(Multimodal Large Language Models)评估的开源项目,它为研究者和开发者提供了一套全面的评估框架和基准测试集。该项目通过标准化的评估流程和丰富的测试任务,帮助用户客观衡量各类多模态模型的性能表现。
核心功能增强
最新发布的v0.3.2版本在多个方面进行了重要升级。首先,项目显著优化了字符串处理逻辑,改进了对空白字符的处理顺序,使得评估结果更加准确可靠。这一改进特别有利于需要精确文本匹配的评估任务,如问答和文本生成类测试。
在模型支持方面,新版本增加了对多种前沿模型的支持,包括Whisper语音识别模型与vLLM推理框架的集成、VideoChat-Flash视频理解模型、InternVideo2.5视频分析模型,以及Qwen-2.5-Omni多模态大模型等。这些新增支持使得评估工具能够覆盖更广泛的模型类型和应用场景。
评估基准扩展
v0.3.2版本引入了多个新的评估基准,大幅丰富了测试覆盖范围:
- OCRBench v2:升级版的OCR性能评估基准,提供更全面的文本识别能力测试
- LiveXiv:针对实时交互场景设计的评估基准,特别适合对话式AI系统
- K系列基准:包括K-MMBench、K-SEED、K-MMStar等,专注于韩语多模态理解能力评估
- VMCBench:面向计算机视觉领域的专业评估基准
- MMAU任务:新增的多模态音频理解评估任务
- WorldSense:测试模型对现实世界常识的理解能力
- Multimodal RewardBench:评估模型在多模态环境中的奖励学习能力
- MME-CoT:基于思维链的多模态评估方法
- Visual Reasoning Collection:新增的视觉推理任务集合
- Omni Bench:全能型评估基准,覆盖多种能力维度
评估方法创新
本次更新在评估方法上也有重要突破。项目引入了LLM作为评估者的新范式,集成了GPT-4o的推理能力,使得评估过程更加智能和灵活。这种方法特别适合需要复杂推理和主观判断的评估任务,能够提供更接近人类评价的结果。
同时,项目还优化了MEGA-Bench评估器的实现,修复了相关问题,并完善了文档说明,使得这一评估方法更加可靠易用。
技术细节优化
在底层实现上,v0.3.2版本也进行了多项改进:
- 修复了Qwen2.5-VL模型的max_new_tokens参数硬编码问题
- 更新了OpenAI API支持,新增对o1和o3模型版本的支持
- 优化了MLVU数据集的合并处理逻辑
- 增加了对VoRA模型的支持
- 完善了Libri-Long语音任务的评估实现
这些改进使得评估工具更加稳定可靠,能够适应更多样的使用场景。
项目生态发展
值得注意的是,v0.3.2版本迎来了14位新贡献者的加入,他们为项目带来了新的模型支持、评估基准和功能改进。这种活跃的社区参与表明LMMs-Eval项目正在快速发展,生态日益丰富。
随着多模态大模型技术的快速演进,LMMs-Eval项目通过持续更新评估基准和方法,为研究社区提供了重要的性能衡量工具。v0.3.2版本的发布,进一步巩固了该项目在多模态评估领域的领先地位,为相关研究提供了更全面、更可靠的评估支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00