SentencePiece项目中关于词汇量与OOV计数的技术解析
2025-05-21 19:16:19作者:晏闻田Solitary
子词分词模型中词汇量设置对未知词的影响
在使用SentencePiece进行子词分词模型训练时,一个常见的疑问是:为什么调整词汇量大小(vocab_size)参数后,测试集中的未知词(OOV)计数保持不变?这种现象背后反映了子词分词模型的核心设计理念和工作原理。
子词分词的基本原理
子词分词(Subword Tokenization)是一种将单词分解为更小子单元的技术,其核心目的是从根本上消除传统分词中的OOV问题。与传统的基于词表的分词方法不同,子词分词通过以下方式工作:
- 将单词分解为更小的子词单元
- 最终可以分解到字符级别
- 确保任何输入文本都能被表示
实验现象分析
在实际测试中,当设置character_coverage=1.0参数时,模型会确保覆盖训练语料中的所有字符。这种情况下:
- 测试集中的OOV实际上只包含那些在训练语料中完全未出现过的字符
- 词汇量大小(vocab_size)的变化不会影响这些基础字符的覆盖
- 因此OOV计数保持稳定,不随词汇量增加而变化
参数设置的深层含义
character_coverage=1.0这个参数设置特别重要,它表示:
- 模型会确保覆盖语料库中100%的字符
- 所有出现的字符都会被包含在词汇表中
- 任何基于这些字符组合的单词理论上都可以被表示
- 真正的OOV只能是训练语料中完全未出现的新字符
实际应用建议
对于希望最小化OOV的用户,建议:
- 确保训练语料的字符覆盖面足够广
- 对于资源稀缺语言,可以适当降低character_coverage值
- 理解子词分词的本质是"没有真正的OOV",只有未被充分训练的字符组合
- 在模型评估时,OOV计数不应是主要指标,而应关注分词质量对下游任务的影响
技术实现细节
SentencePiece在实现上:
- 首先保证字符级别的覆盖
- 然后根据频率统计学习常见的子词组合
- 词汇量大小主要影响学到的子词组合数量
- 但不会影响基础字符的表示能力
这种设计确保了模型在最坏情况下也能回退到字符级别的表示,从而从根本上避免了传统分词中的OOV问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868