首页
/ **深度强化学习在灵活作业车间调度中的革命性突破:End-to-end-DRL-for-FJSP**

**深度强化学习在灵活作业车间调度中的革命性突破:End-to-end-DRL-for-FJSP**

2024-08-25 10:00:43作者:晏闻田Solitary

随着科技的飞速发展,解决复杂调度问题已成为工业自动化和智能制造领域的重要议题。针对这一挑战,我们重点推荐一个开源项目——End-to-end-DRL-for-FJSP,该项目基于最新的深度强化学习技术,专为解决灵活作业车间调度问题(Flexible Job-shop Scheduling Problem, FJSP)设计。

项目介绍

本项目源自于一篇学术论文的实践代码,题为《面向灵活作业车间调度问题的多动作深度强化学习框架》。作者团队通过创新地应用深度学习尤其是图神经网络(GNN),以及定制化的Proximal Policy Optimization (PPO)变种——多动作PPO(multi-PPO),成功解决了传统方法难以应对的大型或实时FJSP实例。该代码库支持最新版本的PyTorch,提供了从训练策略到验证模型的完整流程。

技术分析

核心算法:多动作PPO

项目采用了一个独特的多动作强化学习架构,特别是多-PPO算法。传统PPO仅处理单个行动决策,而在此项目中,通过集成两个独立的行动者网络,分别针对作业操作选择和机器分配进行决策,实现了对多维度决策的高效优化。这不仅提高了模型的灵活性,也大大增强了处理复杂数学约束的能力。

图神经网络(GNN)的应用

利用图神经网络,特别是Graph Isomorphism Network (GIN),项目能够从离散且复杂的车间调度图中提取关键信息,如工序顺序、机器兼容性和加工时间等。这样的设计使得模型能深入理解状态空间,实现更优的决策制定,超越了传统依赖人工规则的方法。

应用场景

  • 制造行业:特别是在面对动态变化的生产环境时,项目可直接应用于任意规模的FJSP,无需预定义复杂的调度规则。
  • 物流与供应链管理:其灵活处理多动作决策的特点,也能适用于物流路径规划与资源调度。
  • 智能优化服务:对于任何需要基于复杂先决条件做出快速响应的场景,如数据中心的任务分配。

项目特点

  1. 端到端解决方案:直接从原始输入数据学习至输出调度方案,无须中间的人工规则设定。
  2. 适应性强:不仅能处理随机生成的测试实例,还支持通过“FJSP_benchmarks”项目来测试真实世界的复杂案例。
  3. 技术前沿:结合了深度强化学习与图神经网络的先进技术,提供了一种全新的FJSP求解思路。
  4. 易用性:提供详细的运行指南,即使是初学者也能迅速上手,开展实验或进一步研究。

End-to-end-DRL-for-FJSP不仅是科研领域的里程碑,也是工程师和开发者们的宝贵工具箱,它开辟了以AI驱动的智能化调度的新篇章。通过利用这一强大的开源资源,您可以显著提升您的系统调度效率,探索更多智能制造的可能性。让我们一起,借力AI,重塑未来工厂的运作逻辑。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0