首页
/ Intel Extension for Transformers 中 QLoRA 在 CPU 上的应用问题解析

Intel Extension for Transformers 中 QLoRA 在 CPU 上的应用问题解析

2025-07-03 03:59:14作者:霍妲思

问题背景

在使用 Intel Extension for Transformers 项目对 Qwen-14B-Chat 模型进行 QLoRA 微调时,用户遇到了设备不支持权重量化的问题。具体表现为在 Intel Xeon CPU 上执行 QLoRA 微调时出现"None device Unsupported weight only quantization"错误。

问题分析

该问题主要涉及以下几个方面:

  1. QLoRA 量化支持:QLoRA 是一种高效的微调方法,它结合了量化技术和 LoRA 微调。在 CPU 上实现 QLoRA 需要特定的量化支持。

  2. 设备检测问题:错误信息显示设备检测为"None",表明系统未能正确识别和配置 CPU 设备。

  3. 目标模块指定:对于 Qwen-14B-Chat 这样的模型,Peft 库尚未注册默认的 LoRA 目标模块,需要手动指定。

解决方案

针对上述问题,项目团队通过以下方式解决了问题:

  1. 代码修复:在项目的最新提交中修复了设备检测和量化支持的问题。

  2. 参数调整:需要在使用 Qwen-14B-Chat 模型时显式指定 LoRA 目标模块为"c_proj"。

  3. 数据类型处理:虽然用户报告了 bf16 数据类型的问题,但经过验证,在正确配置下 bf16 和 QLoRA 可以正常工作。

最佳实践建议

对于希望在 CPU 上使用 Intel Extension for Transformers 进行 QLoRA 微调的用户,建议:

  1. 确保使用最新版本的代码库,特别是包含相关修复的版本。

  2. 对于 Qwen 系列模型,始终指定 LoRA 目标模块参数:--lora_target_modules c_proj

  3. 数据类型选择上,bf16 通常是推荐的选择,但如果在特定环境中遇到问题,可以尝试其他数据类型。

  4. 监控微调过程中的资源使用情况,适当调整批量大小和梯度累积步数等参数。

技术展望

随着大模型在边缘计算和本地部署的需求增加,CPU 上的高效微调技术将变得越来越重要。Intel Extension for Transformers 项目通过支持 QLoRA 等先进技术,为用户提供了在资源受限环境中微调大模型的可能性。未来,我们可以期待更多针对 CPU 优化的量化微调技术的出现。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8