BitsAndBytes项目中LLM.int8量化技术的异常值处理机制解析
2025-05-31 13:28:55作者:宗隆裙
引言
在大型语言模型(LLM)的部署过程中,模型量化是降低计算资源需求的关键技术。TimDettmers团队开发的BitsAndBytes项目实现了LLM.int8量化算法,该算法通过混合精度处理有效解决了传统8位量化在大型模型上的性能下降问题。本文将深入分析LLM.int8量化中异常值的存储和处理机制。
LLM.int8量化基本原理
LLM.int8量化技术的核心思想是将矩阵乘法分解为两部分处理:
- 常规部分:使用8位整数(INT8)进行高效计算
- 异常值部分:保留为16位浮点数(FP16)确保精度
这种混合精度策略既保持了量化的计算效率优势,又避免了传统8位量化在大型模型上常见的性能显著下降问题。
异常值的存储机制
在实际实现中,BitsAndBytes项目采用了以下存储策略:
- 权重矩阵存储:所有权重(包括可能包含异常值的行)都以INT8格式存储
- 动态处理:在前向传播过程中实时检测激活中的异常值列
- 按需解量化:当检测到异常值时,对应的权重行会从INT8动态解量化为FP16
这种设计实现了存储效率与计算精度的平衡。虽然所有权重都以INT8格式存储,但在实际计算时会根据激活情况动态调整部分权重的精度。
实现细节解析
在BitsAndBytes的代码实现中,关键处理流程如下:
- 前向传播检测:在8位线性层的前向传播过程中,系统会分析输入激活,识别异常值列
- 权重处理:对于包含异常值的列,对应的权重行会被解量化
- 混合计算:系统同时执行INT8和FP16两种精度的矩阵乘法
- 结果合并:最终将两部分计算结果合并得到最终输出
解量化过程使用以下公式:
解量化权重 = (weight.CB × weight.SCB) / 127
其中CB和SCB分别是量化参数。
技术优势与考量
这种实现方式具有几个显著优势:
- 存储效率:保持所有权重为INT8格式,显著减少模型存储空间
- 计算灵活性:根据实际输入动态调整计算精度,平衡效率与准确性
- 实现简洁:不需要额外存储FP16格式的异常值权重
需要注意的是,这种设计会引入少量解量化误差,但论文和实践证明,这种误差对模型整体性能影响可以忽略不计。
总结
BitsAndBytes项目中的LLM.int8实现通过创新的混合精度策略,在保持8位存储优势的同时,有效处理了大型语言模型中的异常值问题。理解这一机制对于正确使用和优化量化模型至关重要,特别是在资源受限的部署场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178