在MacOS ARM架构上构建Caldera项目时解决donut-shellcode编译错误
Caldera是一个由MITRE开发的开源红队自动化平台,它依赖于多个Python依赖包来实现其功能。然而,在MacOS系统(尤其是使用M系列芯片)上构建Caldera项目时,开发者可能会遇到一个特定的编译错误,导致donut-shellcode包无法正确构建。
问题背景
当开发者按照标准流程克隆Caldera仓库并尝试安装其Python依赖时,构建过程会在donut-shellcode包处失败。错误信息表明系统无法为donut-shellcode构建wheel文件,这通常是由于底层架构不兼容导致的。
根本原因分析
深入分析错误日志可以发现几个关键点:
-
架构不兼容:donut-shellcode包主要设计用于传统架构,而MacOS的M系列芯片使用的是新架构。错误日志中显示的"macosx-14-newarch-cpython-311"明确指出了这一架构差异。
-
链接器错误:在构建过程中,链接器(ld)报告无法处理aplib.a文件,这表明二进制库文件格式与新架构不兼容。
-
编译器警告:虽然多个编译器警告(如#pragma pack对齐问题)不是导致构建失败的直接原因,但它们表明代码在新架构上的兼容性存在问题。
解决方案
针对这一问题,开发者可以采取以下几种解决方案:
方案一:从requirements.txt中移除donut-shellcode
对于大多数Caldera使用场景,特别是那些不涉及特定shellcode生成功能的情况,可以直接从requirements.txt文件中移除donut-shellcode依赖:
- 编辑requirements.txt文件
- 找到并删除包含donut-shellcode的行
- 重新运行pip安装命令
方案二:使用兼容层模拟传统环境
对于需要完整功能的开发者,可以考虑通过兼容层在新架构Mac上创建传统环境:
- 安装传统架构版本的Homebrew
- 安装传统架构版本的Python
- 在此环境中构建Caldera项目
方案三:等待官方更新
关注Caldera项目的更新,等待官方提供对新架构的完整支持。开发者可以定期检查项目更新或参与社区讨论,了解兼容性改进的进展。
技术影响评估
移除donut-shellcode依赖对Caldera功能的影响程度取决于具体使用场景:
- 基本功能:核心的自动化链和任务编排功能通常不受影响
- 高级功能:某些特定的payload生成或shellcode相关功能可能会受限
- 红队操作:如果操作不依赖特定的shellcode注入技术,大多数红队活动仍可正常进行
最佳实践建议
- 环境选择:对于开发和生产环境,建议优先考虑传统架构的系统
- 依赖管理:定期更新项目依赖,关注各包对新架构的支持情况
- 测试验证:在移除任何依赖后,应全面测试核心功能以确保系统稳定性
- 文档记录:团队内部应记录环境配置和修改,确保一致性
未来展望
随着新架构在桌面计算领域的普及,预计越来越多的安全工具和框架将提供原生支持。开发者可以:
- 关注donut项目的新架构支持进展
- 参与社区讨论,推动跨平台兼容性改进
- 考虑为开源项目贡献新架构的适配代码
通过理解这些技术细节和解决方案,开发者可以更灵活地在不同架构上部署和使用Caldera平台,同时为未来的兼容性改进做好准备。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00