YOLOv10与YOLOv9在RTX 4090上的性能对比分析
2025-05-22 00:00:37作者:何将鹤
本文针对目标检测领域最新的YOLOv10模型与前代YOLOv9模型在NVIDIA RTX 4090显卡上的性能表现进行了深入对比分析。通过实测数据展示了这两代模型在推理速度和效率方面的差异,特别关注了内置NMS(非极大值抑制)功能带来的性能优势。
测试环境配置
测试平台采用NVIDIA GeForce RTX 4090显卡,其关键参数如下:
- 计算能力:8.9
- 流式多处理器(SMs):128个
- 显存容量:24207 MiB
- 计算时钟频率:2.58 GHz
- 显存时钟频率:10.501 GHz
测试使用TensorRT 8.5.3版本进行模型优化和推理加速,所有测试均在FP16精度下进行。
性能测试方法
测试采用trtexec工具进行,主要参数设置包括:
- 启用FP16精度模式
- 使用CUDA Graph优化
- 采用spin-wait模式确保稳定的延迟测量
- 预热500次迭代
- 正式测试持续10秒
这种测试方法能够准确反映模型在实际部署环境中的性能表现。
性能对比数据
YOLOv10系列模型表现
- YOLOv10n:吞吐量2039 qps,99%延迟0.49ms
- YOLOv10s:吞吐量1539 qps,延迟0.65ms
- YOLOv10m:吞吐量971 qps,延迟1.03ms
- YOLOv10b:吞吐量854 qps,延迟1.17ms
- YOLOv10l:吞吐量689 qps,延迟1.45ms
- YOLOv10x:吞吐量501 qps,延迟1.99ms
YOLOv9系列模型表现
- YOLOv9-c:吞吐量825 qps,延迟1.21ms
- YOLOv9-e:吞吐量357 qps,延迟2.80ms
关键发现与技术分析
-
内置NMS的优势:YOLOv10最显著的改进是将NMS操作集成到模型内部,这使得其报告的延迟数据已经包含了NMS处理时间。相比之下,YOLOv9需要额外的后处理步骤执行NMS,实际部署中的总延迟会更高。
-
性能提升明显:在相近模型规模下,YOLOv10展现出明显的性能优势。例如YOLOv10n的吞吐量达到2039 qps,远超YOLOv9-c的825 qps,同时延迟降低约60%。
-
模型扩展性:YOLOv10系列从n到x的各个版本都保持了优异的性能表现,特别是中等规模的YOLOv10m在吞吐量和延迟之间取得了良好平衡。
实际应用建议
对于需要高性能目标检测的应用场景,YOLOv10系列是更好的选择,特别是:
- 实时视频分析系统:低延迟特性至关重要
- 边缘计算设备:需要平衡精度和效率
- 批量图像处理:高吞吐量带来更高效率
对于已经部署YOLOv9的系统,升级到YOLOv10可以获得显著的性能提升,但需要考虑模型重新训练和部署的工作量。
未来优化方向
基于当前测试结果,未来可能的优化方向包括:
- 探索INT8量化对YOLOv10性能的进一步影响
- 研究不同硬件平台上的性能表现
- 针对特定应用场景的模型剪枝和优化
本测试为开发者选择合适的目标检测模型提供了重要参考,展示了YOLOv10在实际部署中的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26