RocketMQ 快速入门指南
1. 项目目录结构及介绍
在 rocketmq-site 库中,我们可以看到以下主要目录:
src
源代码目录,包含了项目页面的HTML、CSS、JavaScript等静态资源。
docs
文档目录,这里存放了项目的所有Markdown格式的文档,包括用户指南、开发者教程等。
eventsevents
可能是一场活动或会议的相关资料,具体用途需要进一步查看。
i18n/en
国际化资源,尤其是英文版本的文档。
news
新闻或更新日志,记录项目的重要事件和更新。
release-notes
版本发布说明,详细的版本变更信息。
src/static
存放静态资源,如图片、样式表和JavaScript文件。
versioned_docs
不同版本的文档存储在这里,方便用户查阅特定版本的API和其他信息。
versioned_sidebars
用于生成侧边栏导航的JSON文件,与不同版本的文档对应。
asf.yaml, gitignore, htaccess, travis.yml
这些是项目管理和自动化工具相关的配置文件,例如Apache基金会的元数据、Git忽略规则、服务器配置和持续集成设置。
README.md
项目的基本介绍和说明文件。
babel.config.js, docusaurus.config.js, package.json, sidebars.js
Docusaurus框架的相关配置,用于构建和管理项目文档站点。
versions.json
包含了所有版本信息,用于文档版本管理和切换。
2. 项目的启动文件介绍
由于rocketmq-site看起来像是一个基于Docusaurus的静态网站,启动文件通常位于根目录下,但是在这个仓库中没有直接的start.sh或者类似的脚本。要运行此网站,你需要首先安装依赖(通过npm install),然后使用npm start命令来本地开发服务器并预览文档。
3. 项目的配置文件介绍
docusaurus.config.js
这是Docusaurus的主要配置文件,它定义了网站的元数据、主题、路由、插件以及其他设置。例如,你可以找到网站标题、描述、版本信息、导航菜单等内容的配置。
.gitignore
定义了哪些文件和目录应该被Git忽略不进行版本控制,例如本地构建生成的文件或缓存。
.travis.yml
持续集成配置文件,用于在 Travis CI 上自动化构建和部署流程。
package.json
项目包管理文件,包含了项目依赖、脚本命令及其他元数据。可以使用npm命令来执行在此文件中定义的脚本,例如build和start。
babel.config.js
Babel 的配置文件,用于编译 ES6+ 语法到浏览器支持的 JavaScript 版本。
siteConfig.js(实际上未在仓库中)
如果存在这个文件,它通常会包含类似于docusaurus.config.js中的配置,但以更模块化的方式组织。
为了启动项目并查看文档,首先确保你有一个Node.js环境,并遵循以下步骤:
- 克隆项目:
git clone https://github.com/apache/rocketmq-site.git - 进入项目目录:
cd rocketmq-site - 安装依赖:
npm install - 启动本地服务器:
npm start
然后在浏览器中访问http://localhost:3000,你应该能看到RocketMQ的文档站点。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00