如何使用 Apache OpenWhisk Composer Python 完成云函数编排任务
在当今云计算和serverless架构日益流行的背景下,如何高效地编排云函数成为开发者的关键需求。Apache OpenWhisk Composer Python 提供了一种创新的编程模型,使得开发者能够轻松构建和部署基于 Apache OpenWhisk 的云函数组合。本文将详细介绍如何使用 Apache OpenWhisk Composer Python 完成云函数编排任务。
引言
随着serverless架构的普及,云函数编排变得越来越重要。通过编排云函数,开发者可以构建复杂的应用程序,实现自动化工作流、对话服务以及DevOps自动化等。Apache OpenWhisk Composer Python 提供了一个强大的工具,使得云函数的编排变得简单而直观。
主体
准备工作
环境配置要求
- Python 3.6 或更高版本
- Apache OpenWhisk环境(本地或云端)
所需数据和工具
- 云函数的代码和配置文件
- Apache OpenWhisk Composer Python 库
模型使用步骤
数据预处理方法
在使用 Apache OpenWhisk Composer Python 之前,确保已经准备好了云函数的代码和配置文件。这些文件将用于定义云函数的行为和逻辑。
模型加载和配置
首先,通过以下命令安装 Apache OpenWhisk Composer Python:
$ git clone https://github.com/apache/openwhisk-composer-python.git
$ cd composer-python
$ pip3 install -e .
安装完成后,可以开始定义云函数组合。以下是一个简单的示例:
import composer
def main():
return composer.when(
composer.action('authenticate', {'action': lambda args: {'value': args['password'] == 'abc123'}}),
composer.action('success', {'action': lambda args: {'message': 'success'}}),
composer.action('failure', {'action': lambda args: {'message': 'failure'}}))
在上面的代码中,我们定义了一个简单的条件逻辑,根据用户密码是否正确来决定调用 success 或 failure 动作。
任务执行流程
将定义的组合编译为JSON格式,并部署到Apache OpenWhisk环境中:
pycompose demo.py > demo.json
pydeploy demo demo.json -w
部署完成后,可以通过OpenWhisk CLI调用组合:
wsk action invoke demo -p password passw0rd
结果分析
输出结果的解读
调用组合后,可以查看每个云函数的执行结果。例如,如果密码错误,将返回 failure 动作的结果:
{
"message": "failure"
}
性能评估指标
性能评估可以通过查看每个云函数的执行时间和状态来完成。可以通过OpenWhisk的激活记录来获取这些信息:
wsk activation list
结论
Apache OpenWhisk Composer Python 为开发者提供了一种简单而有效的方法来编排云函数。通过使用这个工具,开发者可以快速构建和部署serverless应用程序,提高开发效率和应用程序的性能。未来,我们期待看到更多关于Apache OpenWhisk Composer Python的优化和改进,以满足不断增长的云函数编排需求。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00