如何使用 Apache OpenWhisk Composer Python 完成云函数编排任务
在当今云计算和serverless架构日益流行的背景下,如何高效地编排云函数成为开发者的关键需求。Apache OpenWhisk Composer Python 提供了一种创新的编程模型,使得开发者能够轻松构建和部署基于 Apache OpenWhisk 的云函数组合。本文将详细介绍如何使用 Apache OpenWhisk Composer Python 完成云函数编排任务。
引言
随着serverless架构的普及,云函数编排变得越来越重要。通过编排云函数,开发者可以构建复杂的应用程序,实现自动化工作流、对话服务以及DevOps自动化等。Apache OpenWhisk Composer Python 提供了一个强大的工具,使得云函数的编排变得简单而直观。
主体
准备工作
环境配置要求
- Python 3.6 或更高版本
- Apache OpenWhisk环境(本地或云端)
所需数据和工具
- 云函数的代码和配置文件
- Apache OpenWhisk Composer Python 库
模型使用步骤
数据预处理方法
在使用 Apache OpenWhisk Composer Python 之前,确保已经准备好了云函数的代码和配置文件。这些文件将用于定义云函数的行为和逻辑。
模型加载和配置
首先,通过以下命令安装 Apache OpenWhisk Composer Python:
$ git clone https://github.com/apache/openwhisk-composer-python.git
$ cd composer-python
$ pip3 install -e .
安装完成后,可以开始定义云函数组合。以下是一个简单的示例:
import composer
def main():
return composer.when(
composer.action('authenticate', {'action': lambda args: {'value': args['password'] == 'abc123'}}),
composer.action('success', {'action': lambda args: {'message': 'success'}}),
composer.action('failure', {'action': lambda args: {'message': 'failure'}}))
在上面的代码中,我们定义了一个简单的条件逻辑,根据用户密码是否正确来决定调用 success 或 failure 动作。
任务执行流程
将定义的组合编译为JSON格式,并部署到Apache OpenWhisk环境中:
pycompose demo.py > demo.json
pydeploy demo demo.json -w
部署完成后,可以通过OpenWhisk CLI调用组合:
wsk action invoke demo -p password passw0rd
结果分析
输出结果的解读
调用组合后,可以查看每个云函数的执行结果。例如,如果密码错误,将返回 failure 动作的结果:
{
"message": "failure"
}
性能评估指标
性能评估可以通过查看每个云函数的执行时间和状态来完成。可以通过OpenWhisk的激活记录来获取这些信息:
wsk activation list
结论
Apache OpenWhisk Composer Python 为开发者提供了一种简单而有效的方法来编排云函数。通过使用这个工具,开发者可以快速构建和部署serverless应用程序,提高开发效率和应用程序的性能。未来,我们期待看到更多关于Apache OpenWhisk Composer Python的优化和改进,以满足不断增长的云函数编排需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00