SysmonSearch 的安装和配置教程
1. 项目基础介绍
SysmonSearch 是一个开源项目,旨在通过聚合由 Microsoft Sysmon 生成的日志事件,使得日志分析更加高效且节省时间。Sysmon 是一个强大的系统监控工具,用于记录Windows系统中的各种活动,以便于安全分析和事件响应。SysmonSearch 利用 Elasticsearch 和 Kibana(以及 Kibana 插件)来收集和可视化这些日志,帮助用户发现和分析可疑活动。
该项目主要使用的编程语言包括 JavaScript、Python、HTML、CSS 和 Shell 脚本。
2. 关键技术和框架
SysmonSearch 使用以下关键技术和框架:
- Elasticsearch: 用于收集和存储 Sysmon 日志事件的强大搜索引擎。
- Kibana: 提供用户界面,用于 Sysmon 日志分析,其中包括可视化、统计和监控功能。
- Kibana 插件: SysmonSearch 的功能通过 Kibana 插件实现,包括日志可视化、统计分析和日志监控。
- STIX/IOC: 支持上传 STIXv1、STIXv2 和 OpenIOC 格式文件,以添加搜索/监控条件。
3. 安装和配置准备工作
在开始安装 SysmonSearch 之前,请确保您的系统中已安装以下软件和依赖项:
- Java:Elasticsearch 运行时需要 Java 环境。
- Python:部分脚本可能需要 Python 环境来运行。
- Docker(可选):如果您选择使用 Docker 安装 SysmonSearch,需要安装 Docker 环境。
确保您的系统满足这些要求后,可以按照以下步骤进行安装:
安装步骤
步骤 1: 克隆项目
首先,从 GitHub 上克隆 SysmonSearch 项目到本地环境:
git clone https://github.com/JPCERTCC/SysmonSearch.git
cd SysmonSearch
步骤 2: 安装 Elasticsearch 和 Kibana
您可以选择手动安装 Elasticsearch 和 Kibana,或者使用 Docker。
-
手动安装: 下载并安装 Elasticsearch 和 Kibana 的最新版本,请遵循官方文档进行安装。
-
使用 Docker: 使用以下命令拉取 Elasticsearch 和 Kibana 的 Docker 镜像,并启动容器:
docker pull docker.elastic.co/elasticsearch/elasticsearch:7.10.1 docker pull docker.elastic.co/kibana/kibana:7.10.1 docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:7.10.1 docker run -p 5601:5601 docker.elastic.co/kibana/kibana:7.10.1
步骤 3: 配置 Kibana
启动 Kibana 后,打开 Kibana 的配置文件 kibana.yml,添加 SysmonSearch 插件的路径:
plugins:
path: ["/path/to/SysmonSearch/kibana-plugins/sysmon_search_plugin"]
步骤 4: 加载 Sysmon 日志
将 Sysmon 日志文件配置到 Elasticsearch 中,可以通过 Logstash、Filebeat 或者直接使用 Elasticsearch 的 API。
步骤 5: 使用 SysmonSearch
安装完成后,打开 Kibana,您应该能够看到 SysmonSearch 插件提供的功能,包括可视化、统计和监控功能。
按照以上步骤,您应该能够成功安装和配置 SysmonSearch。如果遇到任何问题,请查阅项目的官方文档或者寻求社区的帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00