探索美食的无限可能:MeanRecipe项目推荐
2024-09-26 15:36:42作者:彭桢灵Jeremy
项目介绍
在日常生活中,我们常常会遇到这样的情况:想要尝试一个新的食谱,却发现网上有成千上万的版本,每个版本都有细微的差别。如何在这些繁杂的食谱中找到一个“共识”版本,既能满足大多数人的口味,又能简化我们的烹饪过程?MeanRecipe项目正是为了解决这一问题而诞生的。
MeanRecipe通过聚类分析技术,从海量的食谱中提取出最具代表性的“共识”食谱。它不仅能帮助你快速找到一个平均化的食谱,还能展示不同食谱之间的差异,让你在烹饪过程中有更多的选择和灵感。
项目技术分析
MeanRecipe的核心技术在于其对食谱数据的处理和分析。项目的工作流程如下:
- 选择食谱:用户指定一个食谱名称,例如“巧克力曲奇”。
- 搜索食谱:通过网络搜索,找到成千上万的相关食谱。
- 下载与处理:将所有食谱下载并转换为压缩文本格式,便于后续处理。
- 提取成分:使用一个简单的上下文提取器,从食谱中抓取成分信息。
- 聚类分析:根据成分的相似性,对食谱进行聚类。
- 生成共识食谱:在每个聚类中,去除异常值后,计算成分的平均值,生成一个平均化的食谱。
虽然项目的上下文提取器实现较为简单,但其随机误差特性使得在处理大量食谱时仍能获得不错的结果。
项目及技术应用场景
MeanRecipe的应用场景非常广泛:
- 家庭烹饪:帮助家庭厨师快速找到一个平均化的食谱,减少试错成本。
- 餐饮业:餐厅可以通过MeanRecipe生成共识食谱,确保菜品的一致性和质量。
- 食谱研究:研究人员可以利用MeanRecipe分析不同食谱的差异,探索烹饪文化的多样性。
项目特点
- 自动化处理:MeanRecipe能够自动从网络上下载和处理大量食谱数据,大大减少了用户的工作量。
- 聚类分析:通过聚类分析,MeanRecipe能够识别出不同食谱之间的细微差别,帮助用户更好地理解食谱的多样性。
- 共识食谱生成:项目能够生成一个平均化的食谱,既保留了大多数食谱的特点,又简化了烹饪过程。
- 开源与可扩展:MeanRecipe是一个开源项目,用户可以根据自己的需求进行扩展和改进。
如何使用
在线体验
你可以通过访问MeanRecipe在线版来体验项目的功能。
安装与运行
你可以通过以下方式安装和运行MeanRecipe:
# 使用Go语言安装
$ go get github.com/schollz/meanrecipe
# 运行项目
$ meanrecipe -recipe '巧克力曲奇'
运行时请耐心等待,下载和预处理数据可能需要3-5分钟。数据只会下载一次,再次运行时将使用之前的数据。
自定义设置
你可以通过以下参数自定义MeanRecipe的行为:
-clusters X:指定生成的聚类数量。-include 'ingredient1, ingredient2':确保某些成分包含在生成的食谱中。
未来展望
虽然MeanRecipe目前是一个“快速而粗糙”的项目,但其潜力巨大。未来的改进方向包括:
- 更精确的成分体积计算:目前项目假设所有成分的密度相同,未来可以引入更精确的密度数据。
- 更准确的成分比例:通过改进成分体积计算,可以进一步提高食谱的比例准确性。
- 更智能的解析器:引入更先进的食品标签技术,提高从网页中提取成分的准确性。
结语
MeanRecipe不仅是一个实用的工具,更是一个探索美食多样性的窗口。无论你是家庭厨师、餐饮从业者,还是食谱研究者,MeanRecipe都能为你提供有价值的信息和灵感。赶快尝试一下,开启你的美食探索之旅吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217