ChemBench项目开发指南:Prompter对象与开发工作流详解
2025-07-09 05:05:34作者:郦嵘贵Just
引言
ChemBench是一个专注于化学领域的基准测试框架,它通过标准化的评估流程帮助研究人员测试和比较不同模型在化学任务上的表现。本文将深入解析ChemBench中的核心组件Prompter对象的设计原理,以及项目的开发工作流程规范。
Prompter对象详解
基本概念
Prompter对象是ChemBench中的核心组件,负责处理提示生成以及特殊化学表示(如SMILES、数学公式、化学组成等)的转换工作。这些对象能够根据不同模型的需求,自动适配特定的标记和分词方式。
创建Prompter对象
对于大多数常见用例,可以使用PrompterBuilder.from_model_object类方法快速构建Prompter对象:
from chembench.prompter import PrompterBuilder
# 创建GPT-4的Prompter对象
prompter = PrompterBuilder.from_model_object("openai/gpt-4")
模型类型区分
ChemBench支持两种主要的模型类型:
- 指令调优模型:如GPT-4等,默认使用
prompt_type="instruct" - 基础补全模型:如Qwen/Qwen2.5-0.5B等,需要显式声明
prompt_type="completion"
# 创建基础补全模型的Prompter对象
prompter = PrompterBuilder.from_model_object(
model=model,
prompt_type="completion",
)
特殊化学表示处理
ChemBench采用严格的LaTeX格式和标注规范来处理化学相关的特殊表示。PrompterBuilder提供了多种后处理函数来处理这些特殊表示:
- 化学实体(ce):处理化学实体标记
- 数学公式(math):处理数学公式的$标记
- 物理单位(pu):处理物理单位标记
- SMILES:处理[BEGIN_SMILES][END_SMILES]标记
- 反应SMILES:处理[BEGIN_RXNSMILES][END_RXNSMILES]标记
开发者可以根据模型训练时使用的特定语法选择适当的后处理函数。
答案提取机制
ChemBench采用双重机制来提取模型生成的答案:
- 正则表达式解析:主要方法,通过提示词引导模型按特定格式输出
- LLM回退机制:当正则解析失败时,使用模型自身来提取正确答案
拒绝回答检测
ChemBench提供了三种拒绝回答检测机制:
- 情感分析:基于专用模型分析回答情感倾向
- 关键词匹配:检测常见拒绝回答关键词
- 混合方法:结合情感分析和关键词匹配
Prompter Pipeline配置
通过PrompterPipeline可以灵活配置所有上述设置:
from chembench.prompter import PrompterPipeline
pipeline = PrompterPipeline()
pipeline.add_step('system_prompt', '自定义系统提示')
pipeline.add_hook('post_process_math', custom_math_processor)
pipeline.add_hook('refusal_detection', 'hybrid')
pipeline.add_step('use_cot', True)
prompter = PrompterBuilder.from_model_object(
model=model,
pipeline=pipeline
)
缓存机制
ChemBench使用本地pickle文件(state.pkl)缓存模型结果,避免重复计算。当评估中断时,可以从缓存恢复进度。
开发工作流规范
代码质量标准
- 代码格式化:使用ruff工具确保代码风格一致
- 预提交钩子:通过pre-commit自动运行格式化检查
- 测试要求:所有提交必须通过测试套件
GitFlow工作流
ChemBench采用GitFlow分支模型进行协作开发:
-
主要分支:
main:生产就绪状态develop:功能集成分支
-
支持分支:
- 功能分支(feature/)
- 发布分支(release/)
- 热修复分支(hotfix/)
-
发布流程:
- 从develop创建release分支
- 运行
make release自动化版本更新和变更日志生成 - 合并到main和develop分支
Makefile常用命令
make lint:运行代码检查make format:格式化代码make test:运行测试make release:执行完整发布流程
最佳实践建议
- 化学表示处理:确保选择与模型训练时使用的标记方式匹配的后处理函数
- 测试覆盖:新增功能应包含相应的测试用例
- 版本控制:遵循语义化版本控制规范
- 文档更新:任何接口变更都应同步更新文档
结语
ChemBench通过标准化的Prompter对象和严格的开发规范,为化学领域的模型评估提供了可靠的框架。理解这些核心概念和流程,将帮助开发者更高效地使用和贡献于该项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
666
153
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
300
Ascend Extension for PyTorch
Python
216
235
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
141
876
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
650
仓颉编程语言开发者文档。
59
819