DeepMD-kit中NvNMD QNN模型训练时的数据类型转换问题分析
2025-07-10 23:12:08作者:宣聪麟
问题背景
在DeepMD-kit 2.2.11版本中,当使用NvNMD QNN模型(-s s2参数)进行训练时,如果设置了低精度浮点运算(通过export DP_INTERFACE_PREC=low),系统日志显示g_t张量的数据类型为float64,而其他相关张量如g_s等均为float32。这种数据类型不一致导致在TensorFlow运算过程中出现了类型不匹配的错误。
技术细节分析
从错误日志可以看出,系统在执行MulFltNvnmd操作时,输入参数'w'的类型为float64,而参数'x'的类型为float32,触发了类型不匹配错误。具体表现为:
- 大部分张量如u、rji、s_s等都被正确转换为float32类型
- 唯独filter_type_all/g_t张量保持了float64的原始类型
- 在后续的乘法运算中,系统期望所有输入张量保持一致的float32类型
这种问题在混合精度训练场景中较为常见,特别是在涉及自定义操作或特殊模型架构时。NvNMD(Neural Network Molecular Dynamics)作为DeepMD-kit中的量子神经网络模型,对计算精度有特殊要求,因此在数据类型转换上需要特别注意。
问题根源
经过分析,该问题的根本原因在于:
- 模型在构建过程中没有对所有输入张量进行统一的数据类型转换
- 特别是对于filter_type_all/g_t这个张量,缺少了强制类型转换步骤
- 当启用低精度模式时,系统期望所有张量都使用float32,但部分张量保持了原始精度
解决方案
开发团队在后续版本中修复了这个问题,主要措施包括:
- 确保在模型构建过程中对所有输入张量执行统一的数据类型转换
- 特别处理filter_type_all/g_t张量,强制将其转换为与系统设置一致的数据类型
- 完善类型检查机制,在运算前验证所有输入张量的数据类型一致性
对用户的建议
对于遇到类似问题的用户,可以采取以下措施:
- 确保使用最新版本的DeepMD-kit
- 检查所有输入数据的类型一致性
- 在训练前明确设置所需精度(如export DP_INTERFACE_PREC=low)
- 关注训练日志中的数据类型信息,确保没有意外的类型转换
总结
数据类型一致性在深度学习训练中至关重要,特别是在涉及自定义操作和混合精度计算时。DeepMD-kit团队通过修复这个bug,提高了NvNMD QNN模型在低精度模式下的稳定性和可靠性。用户在使用时应注意版本兼容性,并仔细检查训练日志中的相关信息,以确保训练过程的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399