DeepMD-kit中NvNMD QNN模型训练时的数据类型转换问题分析
2025-07-10 07:02:29作者:宣聪麟
问题背景
在DeepMD-kit 2.2.11版本中,当使用NvNMD QNN模型(-s s2参数)进行训练时,如果设置了低精度浮点运算(通过export DP_INTERFACE_PREC=low),系统日志显示g_t张量的数据类型为float64,而其他相关张量如g_s等均为float32。这种数据类型不一致导致在TensorFlow运算过程中出现了类型不匹配的错误。
技术细节分析
从错误日志可以看出,系统在执行MulFltNvnmd操作时,输入参数'w'的类型为float64,而参数'x'的类型为float32,触发了类型不匹配错误。具体表现为:
- 大部分张量如u、rji、s_s等都被正确转换为float32类型
- 唯独filter_type_all/g_t张量保持了float64的原始类型
- 在后续的乘法运算中,系统期望所有输入张量保持一致的float32类型
这种问题在混合精度训练场景中较为常见,特别是在涉及自定义操作或特殊模型架构时。NvNMD(Neural Network Molecular Dynamics)作为DeepMD-kit中的量子神经网络模型,对计算精度有特殊要求,因此在数据类型转换上需要特别注意。
问题根源
经过分析,该问题的根本原因在于:
- 模型在构建过程中没有对所有输入张量进行统一的数据类型转换
- 特别是对于filter_type_all/g_t这个张量,缺少了强制类型转换步骤
- 当启用低精度模式时,系统期望所有张量都使用float32,但部分张量保持了原始精度
解决方案
开发团队在后续版本中修复了这个问题,主要措施包括:
- 确保在模型构建过程中对所有输入张量执行统一的数据类型转换
- 特别处理filter_type_all/g_t张量,强制将其转换为与系统设置一致的数据类型
- 完善类型检查机制,在运算前验证所有输入张量的数据类型一致性
对用户的建议
对于遇到类似问题的用户,可以采取以下措施:
- 确保使用最新版本的DeepMD-kit
- 检查所有输入数据的类型一致性
- 在训练前明确设置所需精度(如export DP_INTERFACE_PREC=low)
- 关注训练日志中的数据类型信息,确保没有意外的类型转换
总结
数据类型一致性在深度学习训练中至关重要,特别是在涉及自定义操作和混合精度计算时。DeepMD-kit团队通过修复这个bug,提高了NvNMD QNN模型在低精度模式下的稳定性和可靠性。用户在使用时应注意版本兼容性,并仔细检查训练日志中的相关信息,以确保训练过程的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355