Otomi-core项目中Pod DNS配置优化实践
2025-07-03 23:09:49作者:幸俭卉
背景介绍
在Kubernetes集群中,Pod默认使用云服务商提供的DNS服务进行域名解析。然而,在实际生产环境中,我们发现云服务商的DNS记录更新往往存在延迟,有时甚至需要长达30分钟才能完成更新。这种情况给系统运维带来了不小的困扰,特别是当用户能够从本地主机解析域名而集群内Pod却无法及时解析时,问题排查变得更加复杂。
问题分析
在Otomi-core项目中,几个关键作业(如wait-for-otomi-realm、job-keycloak等)的执行依赖于准确的域名解析服务。当云服务商DNS更新延迟时,会导致以下问题:
- 作业执行失败或超时
- 服务发现机制失效
- 系统组件间通信异常
- 用户体验不一致(本地可解析而集群内不可解析)
解决方案
针对这一问题,我们提出了在Pod级别配置自定义DNS设置的优化方案。具体实现是在Pod的dnsConfig中指定可靠的公共DNS服务器,并配置适当的搜索域:
dnsConfig:
nameservers:
- 8.8.8.8 # Google公共DNS主服务器
- 8.8.4.4 # Google公共DNS备用服务器
searches:
- {{ .Values.cluster.domainSuffix }} # 集群域名后缀
方案优势
- 快速解析:使用Google公共DNS服务,解析速度快且更新及时
- 高可用性:配置主备DNS服务器,提高解析服务的可靠性
- 搜索域优化:配置集群域名后缀,简化内部服务访问
- 针对性解决:仅对关键作业Pod进行配置,不影响集群整体DNS策略
实施细节
该优化主要应用于以下关键作业:
- wait-for-otomi-realm作业:系统初始化过程中的关键检查点
- job-keycloak作业:身份认证服务的核心组件
- otomi相关作业:系统管理功能的基础服务
配置说明
- nameservers:指定了Google的公共DNS服务,确保解析的及时性和可靠性
- searches:配置了集群的域名后缀,使得在访问内部服务时可以省略完整域名
实施效果
通过这一优化,我们观察到:
- DNS解析延迟从原来的30分钟级别降低到秒级
- 系统初始化过程的稳定性显著提高
- 服务发现机制更加可靠
- 减少了因DNS问题导致的故障排查时间
最佳实践建议
对于类似场景,我们建议:
- 关键服务优先:首先为核心业务组件配置自定义DNS
- DNS选择:根据实际网络环境选择合适的公共DNS服务
- 监控机制:建立DNS解析性能监控,及时发现潜在问题
- 渐进式实施:先在小范围测试,确认效果后再逐步推广
总结
在云原生环境中,DNS解析的可靠性直接影响系统的稳定性。通过为Otomi-core项目中的关键Pod配置自定义DNS设置,我们有效解决了云服务商DNS更新延迟带来的各类问题。这一实践不仅提升了系统的可靠性,也为类似场景提供了有价值的参考方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881