Kubernetes Kueue项目中TopologyAwareScheduling的Pod分组调度问题分析
2025-07-08 16:11:01作者:庞队千Virginia
问题背景
在Kubernetes Kueue项目的测试过程中,发现了一个与TopologyAwareScheduling(拓扑感知调度)相关的Pod分组调度问题。具体表现为在创建Pod组时,系统未能按照预期的节点排序规则进行Pod调度,导致测试失败。
问题现象
测试用例期望Pod组中的Pod能够按照特定的节点排序规则被调度到指定的工作节点上。然而在实际运行中,Pod被调度到了与预期不同的节点上:
期望调度节点:
0: kind-worker
1: kind-worker2
2: kind-worker3
3: kind-worker4
实际调度节点:
0: kind-worker5
1: kind-worker6
2: kind-worker7
3: kind-worker8
问题根源分析
通过深入分析调度日志和测试流程,我们发现问题的根本原因在于测试环境中的节点状态变化与调度器感知之间存在时间差:
- 测试过程中会删除并重新创建一个节点(kind-worker)
- 节点重新创建后,虽然Kubernetes标记节点为Ready状态
- 但Kueue控制器可能尚未及时感知到这一节点状态变化
- 导致在调度决策时,系统没有将新恢复的节点纳入考虑范围
技术细节
TopologyAwareScheduling是Kueue提供的一种高级调度能力,它允许Pod组中的Pod按照特定的拓扑规则进行协同调度。在这种模式下:
- 调度器会考虑节点的拓扑分布(如区域、机架等)
- 可以确保相关Pod按照最优的拓扑关系进行部署
- 对于需要紧密协作的Pod组特别重要
当节点状态发生变化时,Kubernetes调度器和Kueue控制器需要协调一致地更新各自的节点状态视图。如果两者之间存在时间差,就可能导致调度决策与预期不符。
解决方案
针对这一问题,开发团队提出了以下改进措施:
- 在测试用例中增加等待逻辑,确保Kueue控制器已经完全感知到节点的恢复
- 通过调度一个测试Pod到特定节点来验证节点是否真正可用
- 只有当确认节点已被Kueue完全识别后,才继续执行后续测试步骤
这种方法不仅解决了当前的测试稳定性问题,也为类似场景提供了更可靠的测试模式。
经验总结
这个案例给我们带来了几个重要的经验:
- 在分布式系统中,状态变化的传播需要时间,测试用例需要考虑这种延迟
- 对于依赖特定资源状态的测试,需要增加验证步骤确保系统达到预期状态
- TopologyAwareScheduling这类高级调度功能对系统状态的一致性要求更高
- 在节点维护或故障恢复场景下,调度决策可能会受到临时状态影响
通过这次问题的分析和解决,Kueue项目在拓扑感知调度方面的稳定性和可靠性得到了进一步提升,为生产环境中的使用提供了更好的保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178