MTEB项目中的可选依赖优化方案
2025-07-01 02:34:46作者:柏廷章Berta
背景介绍
MTEB(Massive Text Embedding Benchmark)是一个用于评估文本嵌入模型性能的基准测试框架。随着项目的发展,特别是将MIEB(多模态嵌入基准)合并到主分支后,项目的依赖项数量显著增加。这给用户带来了不必要的安装负担,特别是对于那些不需要使用全部功能的用户。
依赖项分析
当前MTEB项目的主要依赖项包括:
-
核心必需依赖:
- datasets(>=2.19.0,<3.0.0)
- numpy(>=1.0.0,<3.0.0)
- scikit-learn(>=1.0.2)
- scipy(用于STS和摘要任务中的pearsonr、spearmanr计算)
- torch(>1.0.0)
- tqdm(>1.0.0)
- pytrec-eval-terrier(>=0.5.6)
- pydantic(>=2.0.0)
- typing_extensions(用于Pydantic的TypedDict验证)
-
潜在可选依赖:
- torchvision(MIEB所需)
- sentence_transformers(>=3.0.0)
- requests(>=2.26.0)
- rich(可通过#1046移除)
-
其他依赖:
- polars(>=0.20.22)
- eval_type_backport(具体用途待确认)
优化方案
针对上述依赖分析,项目团队提出了以下优化方案:
-
MIEB相关依赖作为可选安装:
- 创建
mteb[mieb]可选安装组,包含torchvision和其他MIEB模型相关依赖 - torchvision版本与torch对齐,建议设置为">0.2.1"
- 创建
-
其他可选依赖处理:
- 保留sentence_transformers为必需依赖,因其改动涉及大量代码重构
- requests可考虑设为可选,因其主要用于模型部分
- rich依赖可通过#1046完全移除
-
未来优化方向:
- 持续评估各依赖项的必要性
- 考虑为不同功能模块创建更多可选安装组
- 监控依赖版本兼容性问题
技术实现细节
在技术实现上,Python项目可以通过setup.py或pyproject.toml中的extras_require来定义可选依赖组。例如:
extras_require = {
'mieb': ["torchvision>0.2.1", ...],
# 可添加更多可选组
}
用户可以通过以下方式安装带有可选功能的包:
pip install mteb[mieb]
总结
通过将非核心功能相关的依赖项设为可选,MTEB项目能够:
- 减少基础安装的依赖项数量
- 降低用户安装负担
- 提高项目的灵活性
- 保持核心功能的稳定性
这种优化方式在大型Python项目中是常见的最佳实践,特别是当项目功能模块不断增加时。它不仅改善了用户体验,也使得项目维护更加清晰和模块化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C062
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
453
3.37 K
Ascend Extension for PyTorch
Python
255
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
833
409
暂无简介
Dart
706
168
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
165
61
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19