Casibase项目中OpenAI本地模型提供者的价格计算功能完善
在Casibase项目中,开发者发现了一个关于OpenAI本地模型提供者(LocalModelProvider)价格计算功能的问题。该问题涉及在"Chat"模式下无法正确获取token数量,导致价格计算不准确。
问题背景
Casibase是一个开源项目,其中包含了对多种AI模型的支持。在本地模型提供者的实现中,需要计算使用OpenAI模型时的费用,这依赖于对输入和输出token数量的统计。然而,开发者发现当模型运行在"Chat"模式时,现有的代码无法正确获取token使用量。
技术细节分析
在OpenAI的API响应中,不同类型的模型会返回不同格式的使用数据。对于传统的文本补全(Completion)模型,API响应中会包含一个Usage字段,其中明确记录了prompt_tokens和completion_tokens的数量。然而,在Chat模式下,这个字段可能不存在或者结构不同。
原代码中的判断逻辑如下:
if getOpenAiModelType(p.subType) == "Chat" {
// 这里缺少获取token数量的逻辑
} else {
promptTokens = completion.Usage.PromptTokens
completionTokens = completion.Usage.CompletionTokens
}
解决方案
开发者通过深入研究OpenAI API的文档和实际响应结构,找到了在Chat模式下获取token数量的方法。修复后的代码正确处理了两种不同模式下的token计数问题,确保了价格计算的准确性。
这个修复不仅解决了功能性问题,还提高了代码的健壮性,为后续可能新增的模型类型预留了扩展空间。对于使用Casibase的开发者来说,这意味着他们可以更准确地估算和跟踪使用OpenAI模型的成本,特别是在构建聊天应用时。
项目意义
Casibase作为一个支持多种AI模型的开源项目,这类问题的解决体现了其对开发者友好性和功能完整性的追求。通过不断完善各个模型提供者的实现细节,Casibase为开发者提供了更可靠、更一致的AI模型集成体验。
这个特定的修复虽然看似只是一个小问题,但它关系到项目核心功能之一的正确性,展示了开源社区通过持续迭代改进软件质量的典型过程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00