MicroProfile Reactive Streams Operators 使用教程
2024-09-02 20:55:46作者:秋阔奎Evelyn
1、项目介绍
MicroProfile Reactive Streams Operators 是一个开源项目,旨在为 Java 开发者提供一套操作 Reactive Streams 的 API。该项目基于 Eclipse MicroProfile 规范,不依赖于 JDK 9 及以上版本,使用 JDK 6 兼容的 org.reactivestreams API。MicroProfile Reactive Streams Operators 提供了一套类似于 Java 8 Stream API 的操作符,但专门针对 Reactive Streams 设计,以满足应用程序开发者的需求。
2、项目快速启动
环境准备
确保你已经安装了以下环境:
- Java 8 或更高版本
- Maven 3.x
快速启动代码
-
克隆项目仓库:
git clone https://github.com/eclipse/microprofile-reactive-streams-operators.git
-
进入项目目录:
cd microprofile-reactive-streams-operators
-
编译项目:
mvn clean install
-
创建一个简单的 Reactive Streams 应用程序:
import org.eclipse.microprofile.reactive.streams.operators.ReactiveStreams; import java.util.concurrent.CompletionStage; public class SimpleReactiveStream { public static void main(String[] args) { CompletionStage<String> result = ReactiveStreams.of("Hello", "World") .map(String::toUpperCase) .toList() .run(); result.thenAccept(list -> list.forEach(System.out::println)); } }
-
运行应用程序:
mvn exec:java -Dexec.mainClass="SimpleReactiveStream"
3、应用案例和最佳实践
应用案例
假设我们有一个需求:从多个数据源异步获取数据,并对数据进行合并和过滤。我们可以使用 MicroProfile Reactive Streams Operators 来实现这一需求。
import org.eclipse.microprofile.reactive.streams.operators.ReactiveStreams;
import java.util.concurrent.CompletionStage;
public class DataAggregation {
public static void main(String[] args) {
CompletionStage<String> result = ReactiveStreams.of("data1", "data2", "data3")
.flatMap(data -> ReactiveStreams.of(data.split(",")))
.filter(str -> !str.isEmpty())
.distinct()
.toList()
.run();
result.thenAccept(list -> list.forEach(System.out::println));
}
}
最佳实践
- 错误处理:在 Reactive Streams 中,错误处理非常重要。确保在每个阶段都处理可能出现的异常。
- 资源管理:使用
onComplete
和onError
方法来管理资源,确保在流完成或出错时释放资源。 - 背压处理:合理处理背压,避免生产者产生数据过快导致消费者处理不过来。
4、典型生态项目
MicroProfile Reactive Streams Operators 可以与其他 MicroProfile 规范和项目集成,例如:
- MicroProfile Config:用于配置管理,可以动态加载配置。
- MicroProfile Fault Tolerance:提供断路器、重试、超时等功能,增强系统的容错能力。
- MicroProfile Health:用于健康检查,确保服务可用性。
通过这些集成,可以构建一个健壮、可扩展的微服务架构。
以上是 MicroProfile Reactive Streams Operators 的使用教程,希望对你有所帮助。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0111DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
340
1.2 K

React Native鸿蒙化仓库
C++
190
267

deepin linux kernel
C
22
6

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
901
537

openGauss kernel ~ openGauss is an open source relational database management system
C++
141
188

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
62
59

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
376
387

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4