【亲测免费】 Llama-CPP-Python 教程
2026-01-16 10:18:51作者:滕妙奇
1. 项目介绍
Llama-CPP-Python 是一个 Python 封装库,用于访问 Llama C++ 库的功能。这个封装使得在 Python 环境中可以方便地利用 Llama 的功能,如文本处理和模型交互。该项目由 Andrei Betlen 开发并维护,它允许用户通过简单的 Python 接口来使用高度优化的 C++ 实现,从而提高性能。
2. 项目快速启动
安装依赖及库
确保你的系统已经安装了 Python >= 3.10, CMake, 和相应的编译工具。然后,你可以使用 pip 来安装 Llama-CPP-Python:
pip install llama-cpp-python
如果你需要特定版本的 CUDA 支持,或者想要启用 Metal(MPS)支持,你可以使用额外的选项:
# 对于 CUDA 版本
CUDA_VERSION=cu121 pip install \
--extra-index-url=https://abetlen.github.io/llama-cpp-python/whl/$CUDA_VERSION \
llama-cpp-python
# 对于 Metal (MPS)
export GGML_METAL=on
pip install llama-cpp-python
运行示例
安装完成后,你可以通过下面的命令来测试 Llama-CPP-Python 是否正确安装:
import llama_cpp
print(llama_cpp.version())
运行服务器示例以实现模型服务:
python3 -m llama_cpp server --model models/7B/llama-model gguf --n_gpu_layers 35
随后可以在浏览器中访问 http://localhost:8000/docs 查看 API 文档。
3. 应用案例和最佳实践
示例:使用 Llama 进行文本处理
import llama_cpp
# 初始化 Llama 后端
llama_cpp.llama_backend_init(False)
# 加载模型参数
params = llama_cpp.llama_context_default_params()
model_path = "/path/to/your/model"
model = llama_cpp.llama_load_model_from_file(model_path.encode(), params)
# 创建上下文
ctx = llama_cpp.llama_new_context_with_model(model, params)
# 分词示例
prompt = "Q: What is the capital of France?".encode()
tokens = (llama_cpp.llama_token * int(params.n_ctx))()
n_tokens = llama_cpp.llama_tokenize(ctx, prompt, tokens, params.n_ctx)
for token in tokens[:n_tokens]:
print(f"Token: {token}")
# 清理资源
llama_cpp.llama_free(ctx)
最佳实践
- 性能优化:根据你的系统配置选择合适的 CUDA 或 Metal 版本。
- 错误处理:在调用 C++ 函数时捕获异常,以便在出现错误时进行适当的处理。
- 模型管理:定期更新模型以获取最新特性或改进。
4. 典型生态项目
虽然 Llama-CPP-Python 是一个独立的库,但它是 Llama 生态系统的一部分,其他相关项目可能包括:
- LLAMA: 原始的 C++ 库,提供高性能的自然语言处理模型接口。
- Llama-CLI: 提供命令行界面的工具,便于与 Llama 模型交互。
- Example Apps: 社区创建的基于 Llama-CPP-Python 的应用程序,展示实际应用场景。
对于详细的生态系统项目列表和相关指南,建议查看 Llama-CPP-Python 的 GitHub 页面及其关联项目。
通过这些步骤,你应该能够顺利地设置并开始使用 Llama-CPP-Python 进行开发。记得随时查阅官方文档以及社区讨论,获取最新的资讯和支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
260
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880