首页
/ 推荐:GAST-Net——实时三维人体姿态估计的图注意力时空卷积网络

推荐:GAST-Net——实时三维人体姿态估计的图注意力时空卷积网络

2024-05-21 21:33:19作者:廉皓灿Ida

推荐:GAST-Net——实时三维人体姿态估计的图注意力时空卷积网络

项目简介

GAST-Net是一个创新的开源项目,专注于在视频中实现高效且精确的3D人体姿态估计算法。该项目引入了一种图注意力时空卷积网络(Graph Attention Spatio-temporal Convolutional Networks),有效地解决了遮挡和深度模糊问题,尤其适用于实时场景。

技术分析

GAST-Net的核心在于它的图注意力机制和时空卷积结构。它通过注意力机制学习人体骨骼的动态信息,如姿势、局部动力学连接和对称性,并利用膨胀时间模型处理不同长度的骨架序列。此外,项目巧妙地设计了空间语义与时间依赖性的交错,实现了两者间的协同效应。这种方法让模型能够在单帧和多帧之间灵活切换,保证了实时性能。

应用场景

GAST-Net的应用广泛,包括但不限于:

  1. 在线3D骨架动作识别:仅需一个RGB摄像头,即可实现实时动作识别。
  2. 实时3D姿态估计:在各种复杂的运动场景下,都能准确捕捉人体动态。
  3. 从自定义视频生成3D姿势:提供教程指导用户如何将模型应用到自己的视频中。

项目特点

  1. 强大的深度学习框架:基于PyTorch构建,易于理解和扩展。
  2. 灵活的时空建模:能够适应不同的骨架序列长度,同时考虑空间和时间信息。
  3. 高效的图注意力机制:提高了对人体骨架结构约束的学习能力。
  4. 丰富的预训练模型:提供了预先训练好的模型,可以快速应用到实际任务中。
  5. 全面的文档支持:详细的数据准备指南,方便用户快速上手。

总的来说,无论你是研究者还是开发者,GAST-Net都是进行3D人体姿态估计算法探索和应用的理想选择。赶紧尝试一下,体验它带来的强大功能吧!

开始使用

在开始之前,请确保已安装Python 3.6+、PyTorch 1.0.1+、matplotlib、numpy以及ffmpeg等依赖库。随后,按照提供的数据准备指南下载并处理数据集,然后运行训练和测试脚本,轻松启动你的3D人体姿态估算之旅。

# 示例命令行运行
python trainval.py -e 80 -k cpn_ft_h36m_dbb -arc 3,3,3 -drop 0.05 -b 128

项目链接:https://github.com/fabro66/GAST-Net-3DPoseEstimation

如果你有任何疑问或反馈,欢迎通过邮件联系作者(junfaliu2019@gmail.com)。让我们共同推进3D人体姿态估计领域的前沿技术!

热门项目推荐
相关项目推荐

项目优选

收起
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
47
115
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
50
13
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
417
317
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
268
403
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
90
158
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TSX
310
28
carboncarbon
轻量级、语义化、对开发者友好的 golang 时间处理库
Go
7
2
ruoyi-airuoyi-ai
RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。
Java
90
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
87
239
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
553
39