首页
/ TensorRT 10.3中直接获取GPU设备内存值的技术解析

TensorRT 10.3中直接获取GPU设备内存值的技术解析

2025-05-20 11:35:35作者:秋阔奎Evelyn

背景介绍

在深度学习推理加速领域,TensorRT作为NVIDIA推出的高性能推理优化器,其内存管理机制直接影响着推理效率。从TensorRT 8升级到TensorRT 10后,执行接口从execute_async_v2变更为execute_async_v3,这一变化带来了内存管理方式的重大调整。

TensorRT 8与10的内存管理差异

在TensorRT 8时代,开发者可以直接通过execute_async_v2函数传递输入输出张量的指针,整个推理过程包括结果获取都可以在GPU上完成。这种设计简化了内存管理流程,减少了不必要的数据传输。

然而,TensorRT 10引入了execute_async_v3接口后,内存绑定方式发生了改变。现在开发者需要显式地设置主机(host)和设备(device)内存,并使用cuda.memcpy在两者之间传输数据。这种变化虽然增加了灵活性,但也带来了额外的内存拷贝开销。

直接访问设备内存的技术实现

在TensorRT 10.3中,仍然可以通过巧妙的方式直接访问GPU设备内存,避免不必要的数据传输。关键点在于正确设置输入输出张量的设备内存指针。

输入张量的处理

对于输入张量,可以直接将现有GPU张量的数据指针赋给绑定:

self.inputs[0]["device"] = int(some_tensor.data_ptr())

输出张量的处理

同样原理也适用于输出张量,只需预先分配GPU内存并设置指针:

# 创建空输出张量
output_shape = [3, 224, 224]
output_tensor = torch.empty([3 * 224 * 224], dtype=somedtype, device="cuda")

# 将输出张量指针赋给绑定
outputs[0]["device"] = int(output_tensor.data_ptr())

推理完成后,结果会直接写入预先分配的output_tensor中,无需额外的设备到主机内存拷贝。

注意事项

  1. 内存对齐:确保分配的内存满足TensorRT的对齐要求
  2. 数据类型匹配:输出张量的数据类型必须与引擎期望的输出类型一致
  3. 生命周期管理:输出张量在推理完成前必须保持有效
  4. 性能考量:虽然避免了显式拷贝,但仍需考虑内存分配和释放的开销

最佳实践建议

  1. 对于连续推理场景,可以预先分配并复用输入输出内存
  2. 考虑使用CUDA流来管理异步操作
  3. 监控内存使用情况,避免内存泄漏
  4. 在性能关键应用中,建议进行基准测试比较不同方法的实际性能

通过这种直接访问设备内存的技术,开发者可以在TensorRT 10.3中实现高效的内存管理,最大化推理性能,减少不必要的数据传输开销。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
248
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
381
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0