Slang编译器调试信息缺失问题分析与解决方案
问题背景
在Slang编译器项目中,开发者发现了一个关于调试信息生成的缺陷。当使用#include指令包含其他Slang着色器文件时,生成的中间表示(IR)和最终SPIR-V代码中缺少关键调试信息。具体表现为DebugFunction、DebugLocation和DebugValue等调试元数据在包含文件中定义的函数和变量上缺失。
问题复现
通过一个简化示例可以清晰重现该问题。假设有两个Slang着色器文件:
test1.slang文件定义了一个简单函数:
int func(int a, int b)
{
return a + b;
}
test2.slang文件包含了test1.slang并使用了其中的函数:
#include "test1.slang"
int func1(int a, int b)
{
return func(a, b) * a * b;
}
RWStructuredBuffer<int> out;
[shader("compute")]
void main()
{
int result = func1(2, 3);
out[0] = result;
}
使用以下命令编译:
slangc test2.slang -target spirv -g -O0 -dump-ir
问题分析
编译后检查生成的IR和SPIR-V代码,发现以下调试信息缺失:
-
在中间表示(IR)中:
- 被包含文件(test1.slang)中定义的func函数缺少DebugFunction元数据
- func函数中的变量缺少DebugVar和DebugValue元数据
-
在生成的SPIR-V中:
- func函数缺少DebugFunctionDefinition指令
- 缺少DebugDeclare指令用于变量声明
- 缺少DebugScope指令定义作用域
这些调试信息的缺失会严重影响开发者的调试体验,特别是在处理复杂着色器时,无法在被包含文件中设置断点或检查变量值。
技术原理
Slang编译器在编译过程中会经历多个阶段:
- 预处理阶段:处理#include等预处理指令,将多个文件合并
- 语法分析阶段:构建抽象语法树(AST)
- 语义分析阶段:进行类型检查和符号解析
- 中间代码生成阶段:生成带有调试信息的IR
- 目标代码生成阶段:转换为SPIR-V等目标格式
问题出现在调试信息附加阶段,编译器没有正确地将调试信息附加到来自包含文件的AST节点上。这可能是由于:
- 源代码位置信息在包含文件合并过程中丢失或未正确传递
- 调试信息生成器没有处理来自不同编译单元的AST节点
- 调试作用域层次结构构建不完整
解决方案
解决此问题需要在编译器的多个层面进行修改:
-
源代码位置跟踪:确保在预处理阶段保留所有源文件的位置信息,包括被包含文件
-
调试信息生成:修改IR生成阶段,为所有函数和变量生成调试信息,无论它们来自哪个源文件
-
作用域处理:完善调试作用域的处理逻辑,确保嵌套包含文件的作用域层次正确
-
SPIR-V调试信息转换:确保所有IR调试信息都能正确转换为SPIR-V的调试指令
实现效果
修复后,开发者将能够:
- 在被包含文件中定义的函数上设置断点
- 检查被包含文件中变量的值
- 获得完整的调用堆栈信息,包括跨文件的调用关系
- 在调试器中查看完整的源代码上下文,包括被包含文件
这对于大型着色器项目的开发至关重要,特别是当通用功能被提取到单独文件中并通过#include重用时。
总结
调试信息是开发工具链中不可或缺的部分,对于着色器开发尤其重要。Slang编译器修复这一调试信息缺失问题后,将显著提升开发者在处理多文件着色器项目时的调试体验和工作效率。这也体现了现代编译器设计中源代码级调试支持的重要性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00