首页
/ CodeAlpaca 项目使用教程

CodeAlpaca 项目使用教程

2024-09-16 20:16:26作者:殷蕙予

1. 项目目录结构及介绍

CodeAlpaca 项目的目录结构如下:

codealpaca/
├── data/
│   └── code_alpaca_20k.json
├── .gitignore
├── DATA_LICENSE
├── LICENSE
├── README.md
├── convert_to_hf.py
├── ds_config.json
├── generate_instruction.py
├── nolora.py
├── prompt.txt
├── requirements.txt
├── seed_tasks.jsonl
├── train.py
└── utils.py

目录结构介绍

  • data/: 存放用于微调模型的数据文件,如 code_alpaca_20k.json
  • .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
  • DATA_LICENSE: 数据集的许可证文件。
  • LICENSE: 项目的许可证文件。
  • README.md: 项目的介绍文档。
  • convert_to_hf.py: 用于将 LLaMA 模型转换为 Hugging Face 兼容格式的脚本。
  • ds_config.json: DeepSpeed 配置文件。
  • generate_instruction.py: 用于生成指令数据的脚本。
  • nolora.py: 可能是一个与 LoRA(低秩适应)相关的脚本。
  • prompt.txt: 提示文本文件。
  • requirements.txt: 项目依赖的 Python 包列表。
  • seed_tasks.jsonl: 种子任务数据文件。
  • train.py: 用于微调模型的训练脚本。
  • utils.py: 项目中使用的工具函数脚本。

2. 项目启动文件介绍

项目的启动文件主要是 train.py,该文件用于微调 LLaMA 模型以生成代码。以下是 train.py 的主要功能介绍:

  • 模型微调: 使用 Hugging Face 的 transformers 库和 DeepSpeed 进行模型微调。
  • 数据加载: 从 data/code_alpaca_20k.json 文件中加载训练数据。
  • 训练配置: 根据 ds_config.json 中的配置进行训练。

使用方法

python train.py --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> --data_path ./data/code_alpaca_20k.json --output_dir <your_output_dir>

3. 项目的配置文件介绍

ds_config.json

ds_config.json 是 DeepSpeed 的配置文件,用于指定训练过程中的各种参数,如学习率、批量大小、梯度累积步数等。以下是一个示例配置:

{
  "train_batch_size": 8,
  "gradient_accumulation_steps": 4,
  "fp16": {
    "enabled": true
  },
  "optimizer": {
    "type": "AdamW",
    "params": {
      "lr": 2e-5,
      "weight_decay": 0
    }
  },
  "scheduler": {
    "type": "WarmupLR",
    "params": {
      "warmup_min_lr": 0,
      "warmup_max_lr": 2e-5,
      "warmup_num_steps": 1000
    }
  }
}

requirements.txt

requirements.txt 文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装依赖:

pip install -r requirements.txt

其他配置文件

  • prompt.txt: 包含用于生成指令的提示文本。
  • seed_tasks.jsonl: 包含用于生成指令数据的种子任务。

通过以上介绍,您应该能够了解 CodeAlpaca 项目的目录结构、启动文件和配置文件的基本情况,并能够开始使用该项目进行代码生成模型的微调。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
715
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1