CodeAlpaca 项目使用教程
2024-09-16 22:55:23作者:殷蕙予
1. 项目目录结构及介绍
CodeAlpaca 项目的目录结构如下:
codealpaca/
├── data/
│ └── code_alpaca_20k.json
├── .gitignore
├── DATA_LICENSE
├── LICENSE
├── README.md
├── convert_to_hf.py
├── ds_config.json
├── generate_instruction.py
├── nolora.py
├── prompt.txt
├── requirements.txt
├── seed_tasks.jsonl
├── train.py
└── utils.py
目录结构介绍
- data/: 存放用于微调模型的数据文件,如
code_alpaca_20k.json
。 - .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
- DATA_LICENSE: 数据集的许可证文件。
- LICENSE: 项目的许可证文件。
- README.md: 项目的介绍文档。
- convert_to_hf.py: 用于将 LLaMA 模型转换为 Hugging Face 兼容格式的脚本。
- ds_config.json: DeepSpeed 配置文件。
- generate_instruction.py: 用于生成指令数据的脚本。
- nolora.py: 可能是一个与 LoRA(低秩适应)相关的脚本。
- prompt.txt: 提示文本文件。
- requirements.txt: 项目依赖的 Python 包列表。
- seed_tasks.jsonl: 种子任务数据文件。
- train.py: 用于微调模型的训练脚本。
- utils.py: 项目中使用的工具函数脚本。
2. 项目启动文件介绍
项目的启动文件主要是 train.py
,该文件用于微调 LLaMA 模型以生成代码。以下是 train.py
的主要功能介绍:
- 模型微调: 使用 Hugging Face 的
transformers
库和 DeepSpeed 进行模型微调。 - 数据加载: 从
data/code_alpaca_20k.json
文件中加载训练数据。 - 训练配置: 根据
ds_config.json
中的配置进行训练。
使用方法
python train.py --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> --data_path ./data/code_alpaca_20k.json --output_dir <your_output_dir>
3. 项目的配置文件介绍
ds_config.json
ds_config.json
是 DeepSpeed 的配置文件,用于指定训练过程中的各种参数,如学习率、批量大小、梯度累积步数等。以下是一个示例配置:
{
"train_batch_size": 8,
"gradient_accumulation_steps": 4,
"fp16": {
"enabled": true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 2e-5,
"weight_decay": 0
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-5,
"warmup_num_steps": 1000
}
}
}
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装依赖:
pip install -r requirements.txt
其他配置文件
- prompt.txt: 包含用于生成指令的提示文本。
- seed_tasks.jsonl: 包含用于生成指令数据的种子任务。
通过以上介绍,您应该能够了解 CodeAlpaca 项目的目录结构、启动文件和配置文件的基本情况,并能够开始使用该项目进行代码生成模型的微调。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4