Jetson-Containers项目中XTTS模型性能优化实践
2025-06-27 01:42:00作者:段琳惟
背景介绍
在Jetson-Containers项目中,XTTS(跨语言文本转语音)模型因其支持语音克隆和多语言特性而备受关注。然而,该模型在Jetson设备上的推理速度相对较慢,成为实际应用中的瓶颈。本文将详细介绍如何通过DeepSpeed和TensorRT两种技术手段来提升XTTS模型的推理性能。
DeepSpeed加速方案
DeepSpeed是微软开发的深度学习优化库,特别适合大规模模型训练和推理。在XTTS模型上应用DeepSpeed需要以下关键步骤:
-
环境准备:
- 重新编译PyTorch时需要启用NCCL支持(
USE_NCCL=1
) - 安装
libaio-dev
库(虽然非必须但推荐) - 降级
setuptools
至69.5.1版本 - 确保CUDA架构版本与设备匹配
- 重新编译PyTorch时需要启用NCCL支持(
-
安装配置:
- 使用特定CUDA架构参数安装DeepSpeed
- 验证PyTorch与DeepSpeed的兼容性
-
性能表现:
- 测试表明,启用DeepSpeed后XTTS推理速度提升约2倍
- 平均推理时间从5.04秒降至2.11秒
TensorRT优化方案
TensorRT是NVIDIA推出的高性能深度学习推理优化器,特别适合Jetson平台。在XTTS模型上的应用要点包括:
-
当前实现:
- 目前TensorRT仅用于
inference_stream
模式 - 需要手动扩展到标准
inference
方法
- 目前TensorRT仅用于
-
性能表现:
- 单独使用TensorRT(fp16)时,性能提升有限(约2%)
- 与DeepSpeed结合使用时,性能进一步提升至1.94秒
综合性能对比
通过系统测试不同配置下的45个样本(平均长度65字符,总计2927字符),得到以下性能数据:
配置方案 | 平均推理时间(秒) | 相对基准加速比 |
---|---|---|
基准配置 | 5.04 | 1x |
仅TensorRT(fp16) | 4.94 | 1.02x |
仅DeepSpeed | 2.11 | 2.39x |
DeepSpeed+TensorRT | 1.94 | 2.60x |
技术分析与建议
-
DeepSpeed优势:
- 主要加速XTTS的GPT部分
- 实现简单,效果显著
- 适合大多数应用场景
-
TensorRT现状:
- 当前仅优化HiFiGAN解码器
- 单独使用效果不明显
- 与DeepSpeed组合可获得额外增益
-
实践建议:
- 优先采用DeepSpeed方案
- 如需极致性能,可组合使用两种技术
- 注意版本兼容性和设备架构匹配
结论
在Jetson设备上,通过DeepSpeed可以显著提升XTTS模型的推理速度,使其更适用于实时应用场景。TensorRT在当前实现中贡献有限,但组合使用时仍能带来额外性能提升。未来可进一步探索模型量化等优化技术,以在资源受限的嵌入式设备上实现更好的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44