And64InlineHook 项目教程
2024-09-14 20:27:09作者:史锋燃Gardner
1. 项目介绍
And64InlineHook 是一个轻量级的 ARMv8-A(ARM64, AArch64, Little-Endian)内联钩子库,专为 Android C/C++ 开发设计。该库允许开发者在 ARM64 架构上实现内联钩子,从而在运行时动态修改函数行为。And64InlineHook 提供了简单易用的 API,使得开发者能够轻松地在 Android 应用中实现函数钩子。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Android NDK
- CMake
- Git
2.2 克隆项目
首先,克隆 And64InlineHook 项目到本地:
git clone https://github.com/Rprop/And64InlineHook.git
cd And64InlineHook
2.3 构建项目
使用 CMake 构建项目:
mkdir build
cd build
cmake ..
make
2.4 示例代码
以下是一个简单的示例代码,展示如何使用 And64InlineHook 进行内联钩子:
#include "And64InlineHook.hpp"
#include <cstdio>
// 目标函数
void targetFunction() {
printf("Original function called!\n");
}
// 钩子函数
void hookedFunction() {
printf("Hooked function called!\n");
}
int main() {
// 初始化钩子
A64HookFunction((void*)targetFunction, (void*)hookedFunction, nullptr);
// 调用目标函数
targetFunction();
return 0;
}
2.5 运行示例
编译并运行示例代码:
./example
你应该会看到输出:
Hooked function called!
3. 应用案例和最佳实践
3.1 应用案例
- 性能监控:通过钩子函数监控特定函数的调用次数和执行时间,帮助开发者优化应用性能。
- 安全审计:在关键函数上设置钩子,记录函数的输入输出,用于安全审计和漏洞检测。
- 功能扩展:在不修改原有代码的情况下,通过钩子函数扩展应用功能。
3.2 最佳实践
- 谨慎使用:内联钩子可能会影响应用的稳定性和性能,建议在开发和测试环境中使用。
- 最小化影响:尽量减少钩子函数的复杂度,避免对原有函数行为产生过大影响。
- 文档记录:详细记录钩子的使用场景和目的,方便后续维护和排查问题。
4. 典型生态项目
- Frida:一个强大的动态分析工具,支持多种平台和架构,包括 Android。Frida 使用类似的技术实现函数钩子。
- Xposed:一个著名的 Android 框架,允许开发者通过模块化方式修改系统行为,广泛应用于功能扩展和安全研究。
- Substrate:一个跨平台的代码注入框架,支持 iOS 和 Android,提供强大的钩子功能。
通过 And64InlineHook,开发者可以在 Android 平台上实现高效、灵活的函数钩子,结合这些生态项目,可以进一步扩展应用的功能和安全性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248