LBANN: Livermore Big Artificial Neural Network
2025-05-16 23:03:33作者:羿妍玫Ivan
1. 项目介绍
LBANN(Livermore Big Artificial Neural Network)是一个用于构建和训练大规模神经网络的开源软件框架。它由劳伦斯利弗莫尔国家实验室(LLNL)开发,旨在处理大规模和高性能计算(HPC)环境下的复杂神经网络模型。LBANN提供了灵活的数据加载、模型构建和训练功能,同时支持多种优化算法和神经网络架构。
2. 项目快速启动
环境准备
在开始之前,确保你的系统已经安装了以下依赖项:
- CMake
- MPI
- HDF5
- ALlreduce (可选,用于多节点训练)
克隆项目
使用Git克隆LBANN项目:
git clone https://github.com/LLNL/lbann.git
cd lbann
构建项目
使用CMake构建项目:
mkdir build && cd build
cmake ..
make
运行示例
运行一个简单的示例训练脚本:
mpirun -np 4 lbann --train dataset_list.txt --num_epochs 10 --weights_file weights.h5
这里的 dataset_list.txt 是包含数据集信息的文件,weights.h5 是用于存储训练权重的文件。
3. 应用案例和最佳实践
数据加载
LBANN提供了多种数据加载策略,包括内存加载和外部存储加载。对于大规模数据集,推荐使用内存映射(memory-mapped)文件来减少I/O开销。
auto data_reader = lbann::data_reader::make_data_reader<lbann::data_reader::imagegesetzt>();
data_reader->set_role(lbann::data_reader::Role::train);
data_reader->set_file_pattern("train_%d.h5");
模型构建
构建一个简单的神经网络模型:
auto model = lbann::model::make_model(lbann::model::Type::neural_network);
model->addLayer(lbann::layer::Input<>(num_global_inputs));
model->addLayer(lbann::layer::FullyConnected<>(num_global_outputs));
model->addLayer(lbann::layer::Sigmoid<>());
model->addLayer(lbann::layer::Target<>(num_global_outputs));
训练和评估
使用LBANN提供的训练和评估工具来训练模型并评估其性能:
lbann::trainer trainer(model);
trainer.train();
4. 典型生态项目
LBANN作为高性能计算领域的一个神经网络框架,与其他开源项目有着良好的兼容性,例如:
- OpenMP:用于多线程并行计算。
- TensorFlow:可以与LBANN互操作,实现模型的转换和迁移学习。
- Kaldi:一个开源语音识别框架,可以与LBANN结合进行端到端的语音识别任务。
以上就是关于LBANN的简单介绍和快速启动指南,希望对您有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Ossia Score中NDI输出设备命名问题的分析与解决方案 pytorch-dann项目中的DANN域适应训练过程详解 Landrun项目新增网络与文件系统全开放模式的技术解析 Pwnagotchi设备间歇性失明问题分析与解决方案 DeepStream-Yolo 项目性能优化实践:多路视频流处理性能提升方案 Hydrogen项目开发环境EPIPE错误排查与解决方案 Scaffold-ETH 2 项目中Foundry部署流程的密钥管理问题分析
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120