在vLLM中部署GLM-4-9B-Chat大语言模型的技术实践
vLLM作为当前流行的高效大语言模型推理框架,能够显著提升模型的推理速度和吞吐量。本文将详细介绍如何在vLLM框架中成功部署GLM-4-9B-Chat大语言模型,并解决实际部署过程中可能遇到的关键问题。
模型部署基础命令
使用vLLM部署GLM-4-9B-Chat模型的基础命令如下:
python -m vllm.entrypoints.openai.api_server \
--model ZhipuAI/glm-4-9b-chat \
--served-model-name glm-4 \
--device=cuda \
--trust-remote-code
这个命令启动了vLLM的OpenAI兼容API服务,将GLM-4-9B-Chat模型加载到CUDA设备上运行,并设置了服务模型名称为"glm-4"。
关键问题解决方案
1. 模型终止符识别问题
在初始部署时,可能会遇到模型无法正确识别结束符(EOS token)的问题。这是因为GLM-4模型的配置文件需要包含完整的generation_config.json文件。该文件定义了模型生成文本时的各种参数,包括结束符ID等重要信息。
解决方案是确保模型目录中包含正确的generation_config.json配置文件。对于GLM-4-9B-Chat模型,这个文件应该包含模型生成文本所需的所有配置参数。
2. 显存不足问题
在NVIDIA 4090 24GB显卡上部署9B参数的GLM-4模型时,可能会遇到显存不足的错误。这是因为大语言模型本身参数规模较大,加上推理过程中的中间计算结果,很容易超出单卡显存容量。
可以通过添加--max-model-len参数来限制模型处理的最大序列长度,从而减少显存占用。例如:
--max-model-len 8192
这个参数将模型处理的最大序列长度限制为8192个token,显著降低了显存需求,使得24GB显存的显卡也能顺利运行9B参数的模型。
完整部署命令
结合上述解决方案,完整的部署命令如下:
python -m vllm.entrypoints.openai.api_server \
--model ZhipuAI/glm-4-9b-chat \
--served-model-name glm-4 \
--device=cuda \
--trust-remote-code \
--max-model-len 8192
性能优化建议
-
量化技术:可以考虑使用vLLM支持的量化技术(如AWQ、GPTQ)来进一步减少模型显存占用,提升推理速度。
-
批处理优化:适当调整
--max-num-seqs参数可以优化批处理性能,提高吞吐量。 -
Tensor并行:对于更大的模型或多卡环境,可以使用
--tensor-parallel-size参数实现张量并行计算。
通过以上技术实践,开发者可以在消费级GPU上高效部署和运行GLM-4-9B-Chat大语言模型,为各种自然语言处理应用提供强有力的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00