OpenCLIP项目对SigLip 2视觉语言模型的支持进展
近日,OpenCLIP项目团队宣布已完成对Google最新发布的SigLip 2系列视觉语言模型的全面支持。这一进展为计算机视觉和自然语言处理领域的研究者提供了更多强大的预训练模型选择。
SigLip 2是Google推出的新一代视觉语言模型家族,采用了创新的Sigmoid损失函数替代传统的Softmax,在跨模态任务中展现出卓越的性能。OpenCLIP作为开源的视觉语言预训练框架,其快速集成新模型的能力一直备受社区关注。
根据项目核心开发者透露,目前已完成所有固定分辨率SigLip 2模型的测试和验证工作。这些模型在ImageNet-1k零样本分类任务上表现优异,其中:
- B/16-512模型达到81.29%的top1准确率
- L/16-512模型达到83.50%的top1准确率
- SO/16-512模型达到84.27%的top1准确率
- gopt/16-384模型表现最佳,达到84.88%的top1准确率
值得注意的是,这些评估结果是在混合精度(AMP)和bfloat16格式下获得的,与原始JAX实现的结果差异在预期范围内。开发者采用了双三次插值作为默认的图像缩放方法,这与Transformers库的实现略有不同,导致准确率存在微小差异。
对于可变分辨率的NAFLEX模型,开发者表示需要更深入的工程考虑。这类模型采用了序列打包(sequence packing)技术,能够处理不同长宽比的输入图像。然而,将这种可变分辨率处理机制整合到PyTorch训练管道中面临技术挑战,特别是如何在不显著降低训练效率的情况下,合理划分数据加载器和模型之间的职责边界。
项目团队计划在未来版本中逐步完善对可变分辨率模型的支持,而不会仅仅提供推理解决方案。目前,用户已经可以通过OpenCLIP主分支和timm库的组合来使用固定分辨率的SigLip 2模型。预计本周末将发布包含这些新特性的正式版本。
这一进展标志着OpenCLIP项目继续保持其在多模态学习领域的领先地位,为研究社区提供了更多前沿的预训练模型选择。开发者社区对SigLip 2系列模型的快速支持也展现了项目的活跃度和技术实力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0133
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00