OpenCLIP项目对SigLip 2视觉语言模型的支持进展
近日,OpenCLIP项目团队宣布已完成对Google最新发布的SigLip 2系列视觉语言模型的全面支持。这一进展为计算机视觉和自然语言处理领域的研究者提供了更多强大的预训练模型选择。
SigLip 2是Google推出的新一代视觉语言模型家族,采用了创新的Sigmoid损失函数替代传统的Softmax,在跨模态任务中展现出卓越的性能。OpenCLIP作为开源的视觉语言预训练框架,其快速集成新模型的能力一直备受社区关注。
根据项目核心开发者透露,目前已完成所有固定分辨率SigLip 2模型的测试和验证工作。这些模型在ImageNet-1k零样本分类任务上表现优异,其中:
- B/16-512模型达到81.29%的top1准确率
- L/16-512模型达到83.50%的top1准确率
- SO/16-512模型达到84.27%的top1准确率
- gopt/16-384模型表现最佳,达到84.88%的top1准确率
值得注意的是,这些评估结果是在混合精度(AMP)和bfloat16格式下获得的,与原始JAX实现的结果差异在预期范围内。开发者采用了双三次插值作为默认的图像缩放方法,这与Transformers库的实现略有不同,导致准确率存在微小差异。
对于可变分辨率的NAFLEX模型,开发者表示需要更深入的工程考虑。这类模型采用了序列打包(sequence packing)技术,能够处理不同长宽比的输入图像。然而,将这种可变分辨率处理机制整合到PyTorch训练管道中面临技术挑战,特别是如何在不显著降低训练效率的情况下,合理划分数据加载器和模型之间的职责边界。
项目团队计划在未来版本中逐步完善对可变分辨率模型的支持,而不会仅仅提供推理解决方案。目前,用户已经可以通过OpenCLIP主分支和timm库的组合来使用固定分辨率的SigLip 2模型。预计本周末将发布包含这些新特性的正式版本。
这一进展标志着OpenCLIP项目继续保持其在多模态学习领域的领先地位,为研究社区提供了更多前沿的预训练模型选择。开发者社区对SigLip 2系列模型的快速支持也展现了项目的活跃度和技术实力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00