Darts项目中多变量时间序列数据的预处理与标准化方法
2025-05-27 23:08:51作者:庞队千Virginia
概述
在时间序列预测项目中,正确处理多变量数据是构建有效模型的关键步骤。本文将详细介绍如何使用Darts库对包含目标变量和多个协变量的时间序列数据进行预处理和标准化,特别关注训练集、验证集和测试集的划分策略。
数据准备
首先需要将原始数据转换为Darts库能够处理的TimeSeries对象。常见的数据准备步骤包括:
- 读取CSV文件并解析时间戳列
- 设置时间戳为索引
- 明确区分目标变量和协变量列
import pandas as pd
from darts import TimeSeries
# 读取数据并设置时间索引
df = pd.read_csv('data.csv')
df['Timestamp'] = pd.to_datetime(df['Timestamp'])
df.set_index('Timestamp', inplace=True)
# 定义目标变量和协变量
target_column_names = ['chlorophyll']
covariate_columns_names = ['TEM', 'PH', 'DO', 'conductivity', 'turbidity', 'PV', 'AN', 'TP', 'TN']
# 转换为TimeSeries对象
target_series = TimeSeries.from_dataframe(df, value_cols=target_column_names, freq='H')
covariate_series = TimeSeries.from_dataframe(df, value_cols=covariate_columns_names, freq='H')
数据集划分策略
合理划分数据集对于评估模型性能至关重要。推荐采用以下划分比例:
- 训练集:80%
- 验证集:10%
- 测试集:10%
# 定义划分比例
train_ratio = 0.8
val_ratio = 0.1
test_ratio = 0.1
# 目标变量划分
train_target, temp_target = target_series.split_before(train_ratio)
val_target, test_target = temp_target.split_before(val_ratio / (1 - train_ratio))
# 协变量划分
train_covariates, temp_covariates = covariate_series.split_before(train_ratio)
val_covariates, test_covariates = temp_covariates.split_before(val_ratio / (1 - train_ratio))
数据标准化处理
标准化是时间序列预测中的重要预处理步骤,可以确保不同尺度的变量对模型有同等的影响。
目标变量标准化
from darts.dataprocessing.transformers import Scaler
from darts import concatenate
# 初始化标准化器
scaler_target = Scaler()
# 对整个序列进行标准化(可选)
target_scaled = scaler_target.fit_transform(target_series)
# 对划分后的数据集进行标准化
train_target_scaled = scaler_target.fit_transform(train_target)
val_target_scaled = scaler_target.transform(val_target)
test_target_scaled = scaler_target.transform(test_target)
# 合并训练集和验证集用于模型训练
model_target_scaled = concatenate([train_target_scaled, val_target_scaled])
协变量标准化
对于多变量协变量,Darts的Scaler会独立处理每个变量:
scaler_covariates = Scaler()
# 协变量标准化
train_covariates_scaled = scaler_covariates.fit_transform(train_covariates)
val_covariates_scaled = scaler_covariates.transform(val_covariates)
test_covariates_scaled = scaler_covariates.transform(test_covariates)
# 合并数据集
model_covariates_scaled = concatenate([train_covariates_scaled, val_covariates_scaled])
all_covariates_scaled = concatenate([model_covariates_scaled, test_covariates_scaled])
多变量协变量的处理
当需要添加更多协变量时,可以通过stack或concatenate方法组合它们:
- concatenate:在时间维度上连接时间序列
- stack:在变量维度上堆叠时间序列
# 假设有多个协变量源
past_covariates1 = TimeSeries.from_dataframe(df1, value_cols=['var1', 'var2'])
past_covariates2 = TimeSeries.from_dataframe(df2, value_cols=['var3', 'var4'])
# 方法1:在变量维度上堆叠
stacked_covariates = past_covariates1.stack(past_covariates2)
# 方法2:在时间维度上连接
concatenated_covariates = concatenate([past_covariates1, past_covariates2], axis=1)
重要提示:任何新增的协变量都必须在首次拟合Scaler之前添加,否则会因为维度不匹配而报错。
可视化验证
完成预处理后,建议可视化检查数据划分和标准化效果:
import matplotlib.pyplot as plt
train_target_scaled.plot(label="training")
val_target_scaled.plot(label="validation")
test_target_scaled.plot(label="test")
plt.show()
最佳实践建议
- 保持一致性:确保目标变量和协变量使用相同的划分点
- 避免数据泄露:先划分数据集再进行标准化,且只在训练集上拟合Scaler
- 多变量处理:Darts的Scaler会自动独立处理每个变量,无需额外配置
- 新增协变量:在模型开发过程中添加新协变量时,需要重新进行整个预处理流程
通过遵循这些步骤和原则,可以确保时间序列数据得到正确处理,为后续建模打下坚实基础。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8