Darts项目中多变量时间序列数据的预处理与标准化方法
2025-05-27 23:24:50作者:庞队千Virginia
概述
在时间序列预测项目中,正确处理多变量数据是构建有效模型的关键步骤。本文将详细介绍如何使用Darts库对包含目标变量和多个协变量的时间序列数据进行预处理和标准化,特别关注训练集、验证集和测试集的划分策略。
数据准备
首先需要将原始数据转换为Darts库能够处理的TimeSeries对象。常见的数据准备步骤包括:
- 读取CSV文件并解析时间戳列
- 设置时间戳为索引
- 明确区分目标变量和协变量列
import pandas as pd
from darts import TimeSeries
# 读取数据并设置时间索引
df = pd.read_csv('data.csv')
df['Timestamp'] = pd.to_datetime(df['Timestamp'])
df.set_index('Timestamp', inplace=True)
# 定义目标变量和协变量
target_column_names = ['chlorophyll']
covariate_columns_names = ['TEM', 'PH', 'DO', 'conductivity', 'turbidity', 'PV', 'AN', 'TP', 'TN']
# 转换为TimeSeries对象
target_series = TimeSeries.from_dataframe(df, value_cols=target_column_names, freq='H')
covariate_series = TimeSeries.from_dataframe(df, value_cols=covariate_columns_names, freq='H')
数据集划分策略
合理划分数据集对于评估模型性能至关重要。推荐采用以下划分比例:
- 训练集:80%
- 验证集:10%
- 测试集:10%
# 定义划分比例
train_ratio = 0.8
val_ratio = 0.1
test_ratio = 0.1
# 目标变量划分
train_target, temp_target = target_series.split_before(train_ratio)
val_target, test_target = temp_target.split_before(val_ratio / (1 - train_ratio))
# 协变量划分
train_covariates, temp_covariates = covariate_series.split_before(train_ratio)
val_covariates, test_covariates = temp_covariates.split_before(val_ratio / (1 - train_ratio))
数据标准化处理
标准化是时间序列预测中的重要预处理步骤,可以确保不同尺度的变量对模型有同等的影响。
目标变量标准化
from darts.dataprocessing.transformers import Scaler
from darts import concatenate
# 初始化标准化器
scaler_target = Scaler()
# 对整个序列进行标准化(可选)
target_scaled = scaler_target.fit_transform(target_series)
# 对划分后的数据集进行标准化
train_target_scaled = scaler_target.fit_transform(train_target)
val_target_scaled = scaler_target.transform(val_target)
test_target_scaled = scaler_target.transform(test_target)
# 合并训练集和验证集用于模型训练
model_target_scaled = concatenate([train_target_scaled, val_target_scaled])
协变量标准化
对于多变量协变量,Darts的Scaler会独立处理每个变量:
scaler_covariates = Scaler()
# 协变量标准化
train_covariates_scaled = scaler_covariates.fit_transform(train_covariates)
val_covariates_scaled = scaler_covariates.transform(val_covariates)
test_covariates_scaled = scaler_covariates.transform(test_covariates)
# 合并数据集
model_covariates_scaled = concatenate([train_covariates_scaled, val_covariates_scaled])
all_covariates_scaled = concatenate([model_covariates_scaled, test_covariates_scaled])
多变量协变量的处理
当需要添加更多协变量时,可以通过stack或concatenate方法组合它们:
- concatenate:在时间维度上连接时间序列
- stack:在变量维度上堆叠时间序列
# 假设有多个协变量源
past_covariates1 = TimeSeries.from_dataframe(df1, value_cols=['var1', 'var2'])
past_covariates2 = TimeSeries.from_dataframe(df2, value_cols=['var3', 'var4'])
# 方法1:在变量维度上堆叠
stacked_covariates = past_covariates1.stack(past_covariates2)
# 方法2:在时间维度上连接
concatenated_covariates = concatenate([past_covariates1, past_covariates2], axis=1)
重要提示:任何新增的协变量都必须在首次拟合Scaler之前添加,否则会因为维度不匹配而报错。
可视化验证
完成预处理后,建议可视化检查数据划分和标准化效果:
import matplotlib.pyplot as plt
train_target_scaled.plot(label="training")
val_target_scaled.plot(label="validation")
test_target_scaled.plot(label="test")
plt.show()
最佳实践建议
- 保持一致性:确保目标变量和协变量使用相同的划分点
- 避免数据泄露:先划分数据集再进行标准化,且只在训练集上拟合Scaler
- 多变量处理:Darts的Scaler会自动独立处理每个变量,无需额外配置
- 新增协变量:在模型开发过程中添加新协变量时,需要重新进行整个预处理流程
通过遵循这些步骤和原则,可以确保时间序列数据得到正确处理,为后续建模打下坚实基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5