在Chinese-LLaMA-Alpaca-2项目中指定GPU进行模型精调的技术指南
背景介绍
Chinese-LLaMA-Alpaca-2是一个优秀的中文大语言模型项目,基于LLaMA架构进行了针对中文的优化和改进。在实际使用过程中,特别是在模型精调阶段,合理利用GPU资源对于提高训练效率和资源利用率至关重要。
问题描述
许多开发者在进行模型精调时发现,默认情况下模型只能在第一个GPU(cuda:0)上运行。这在多GPU环境下会造成资源浪费,特别是当cuda:0已经被其他任务占用时。虽然尝试通过torch.device("cuda:3")来指定GPU,但这种方法往往不生效。
解决方案
经过项目协作者的确认,最有效的方法是在运行脚本的最开始添加环境变量CUDA_VISIBLE_DEVICES来指定使用的GPU设备。具体命令格式如下:
CUDA_VISIBLE_DEVICES=3 torchrun ...
这种方法比在代码中直接设置device更加底层和可靠,因为它是在PyTorch运行环境初始化阶段就确定了可见的GPU设备。
技术原理
-
CUDA_VISIBLE_DEVICES环境变量:这是NVIDIA CUDA提供的一个环境变量,用于控制哪些GPU设备对应用程序可见。设置为"3"表示只让编号为3的GPU对程序可见。
-
torchrun命令:这是PyTorch提供的分布式训练启动工具,会自动处理多GPU环境下的进程分配。
-
执行顺序:环境变量的设置必须在torchrun命令之前,这样才能确保PyTorch初始化时就已经限制了可见的GPU设备。
实际应用建议
-
多任务场景:当服务器上有多个任务需要并行运行时,可以为每个任务分配不同的GPU,避免资源冲突。
-
性能监控:指定GPU后可以更方便地使用nvidia-smi等工具监控特定GPU的使用情况。
-
资源隔离:在共享GPU服务器上,这种方法可以确保你的任务不会意外占用其他用户的GPU资源。
注意事项
-
GPU编号是从0开始的,确保指定的编号确实存在于你的系统中。
-
在某些集群环境中,GPU的物理编号可能与系统显示的编号不同,需要咨询系统管理员确认。
-
如果同时需要多块GPU,可以用逗号分隔,如
CUDA_VISIBLE_DEVICES=2,3。
通过这种方法,开发者可以更灵活地管理GPU资源,提高Chinese-LLaMA-Alpaca-2模型精调过程的效率和稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00