QLib项目中LSTM模型训练出现NaN问题的分析与解决
问题背景
在QLib金融量化研究框架中,用户在使用LSTM模型进行训练时遇到了一个常见但棘手的问题——训练过程中出现了NaN(非数值)结果。具体表现为在运行workflow_config_lstm_Alpha158.yaml示例时,模型的训练和验证损失都变成了NaN值。
问题现象
当用户执行LSTM模型训练时,日志显示:
training...
Epoch0:
training...
evaluating...
train nan, valid nan
通过进一步排查发现,在pytorch_lstm_ts.py文件的第184行,模型预测输出pred全部变成了NaN值。这个问题不仅出现在LSTM模型中,ALSTM和KRNN等其他时序模型也报告了类似现象。
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
数据预处理不完整:尽管在data_handler_config中设置了fillna(填充缺失值)选项,但实际并未生效,导致原始数据中的NaN值直接进入了模型训练过程。
-
PyTorch版本兼容性:不同版本的PyTorch对NaN值的处理方式可能存在差异,特别是在某些版本中,NaN值会通过计算图传播,导致整个输出变为NaN。
-
Python环境差异:有用户报告在Python 3.7环境下运行正常,而在Python 3.8环境下会出现此问题,表明环境依赖可能影响数值稳定性。
解决方案
针对这一问题,社区提出了几种有效的解决方案:
-
显式处理NaN值: 在模型的
train_epoch和test_epoch方法中,添加显式的NaN值处理代码:feature = torch.nan_to_num(feature, 0)这会将所有NaN值替换为0,确保输入数据的数值稳定性。
-
增加训练轮次: 有用户发现即使前几轮出现NaN,继续训练10轮左右后模型会恢复正常。这表明NaN可能是初期数值不稳定导致的暂时现象。
-
检查数据预处理: 确保在数据加载阶段正确配置了fillna参数,或者在自定义数据处理器中显式处理缺失值。
-
环境配置检查: 使用较新的PyTorch版本,并确保Python环境的一致性,特别是对于生产环境部署。
最佳实践建议
-
数据质量检查:在模型训练前,应该对输入数据进行全面的质量检查,包括缺失值、异常值和数据分布。
-
数值稳定性措施:考虑在模型中添加梯度裁剪、权重初始化检查等数值稳定性措施。
-
日志监控:实现更详细的训练过程监控,包括每层的输入输出范围检查,便于早期发现问题。
-
单元测试:为关键的数据预处理和模型组件编写单元测试,确保在各种边界条件下都能正确处理。
总结
QLib框架中的LSTM模型NaN问题是一个典型的数据处理和数值稳定性问题。通过显式处理缺失值、确保环境一致性以及采用适当的训练策略,可以有效解决这一问题。这也提醒我们在开发机器学习系统时,数据质量检查和数值稳定性处理是不可或缺的重要环节。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00