QLib项目中LSTM模型训练出现NaN问题的分析与解决
问题背景
在QLib金融量化研究框架中,用户在使用LSTM模型进行训练时遇到了一个常见但棘手的问题——训练过程中出现了NaN(非数值)结果。具体表现为在运行workflow_config_lstm_Alpha158.yaml
示例时,模型的训练和验证损失都变成了NaN值。
问题现象
当用户执行LSTM模型训练时,日志显示:
training...
Epoch0:
training...
evaluating...
train nan, valid nan
通过进一步排查发现,在pytorch_lstm_ts.py
文件的第184行,模型预测输出pred
全部变成了NaN值。这个问题不仅出现在LSTM模型中,ALSTM和KRNN等其他时序模型也报告了类似现象。
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
数据预处理不完整:尽管在data_handler_config中设置了fillna(填充缺失值)选项,但实际并未生效,导致原始数据中的NaN值直接进入了模型训练过程。
-
PyTorch版本兼容性:不同版本的PyTorch对NaN值的处理方式可能存在差异,特别是在某些版本中,NaN值会通过计算图传播,导致整个输出变为NaN。
-
Python环境差异:有用户报告在Python 3.7环境下运行正常,而在Python 3.8环境下会出现此问题,表明环境依赖可能影响数值稳定性。
解决方案
针对这一问题,社区提出了几种有效的解决方案:
-
显式处理NaN值: 在模型的
train_epoch
和test_epoch
方法中,添加显式的NaN值处理代码:feature = torch.nan_to_num(feature, 0)
这会将所有NaN值替换为0,确保输入数据的数值稳定性。
-
增加训练轮次: 有用户发现即使前几轮出现NaN,继续训练10轮左右后模型会恢复正常。这表明NaN可能是初期数值不稳定导致的暂时现象。
-
检查数据预处理: 确保在数据加载阶段正确配置了fillna参数,或者在自定义数据处理器中显式处理缺失值。
-
环境配置检查: 使用较新的PyTorch版本,并确保Python环境的一致性,特别是对于生产环境部署。
最佳实践建议
-
数据质量检查:在模型训练前,应该对输入数据进行全面的质量检查,包括缺失值、异常值和数据分布。
-
数值稳定性措施:考虑在模型中添加梯度裁剪、权重初始化检查等数值稳定性措施。
-
日志监控:实现更详细的训练过程监控,包括每层的输入输出范围检查,便于早期发现问题。
-
单元测试:为关键的数据预处理和模型组件编写单元测试,确保在各种边界条件下都能正确处理。
总结
QLib框架中的LSTM模型NaN问题是一个典型的数据处理和数值稳定性问题。通过显式处理缺失值、确保环境一致性以及采用适当的训练策略,可以有效解决这一问题。这也提醒我们在开发机器学习系统时,数据质量检查和数值稳定性处理是不可或缺的重要环节。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









