QLib项目中LSTM模型训练出现NaN问题的分析与解决
问题背景
在QLib金融量化研究框架中,用户在使用LSTM模型进行训练时遇到了一个常见但棘手的问题——训练过程中出现了NaN(非数值)结果。具体表现为在运行workflow_config_lstm_Alpha158.yaml示例时,模型的训练和验证损失都变成了NaN值。
问题现象
当用户执行LSTM模型训练时,日志显示:
training...
Epoch0:
training...
evaluating...
train nan, valid nan
通过进一步排查发现,在pytorch_lstm_ts.py文件的第184行,模型预测输出pred全部变成了NaN值。这个问题不仅出现在LSTM模型中,ALSTM和KRNN等其他时序模型也报告了类似现象。
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
数据预处理不完整:尽管在data_handler_config中设置了fillna(填充缺失值)选项,但实际并未生效,导致原始数据中的NaN值直接进入了模型训练过程。
-
PyTorch版本兼容性:不同版本的PyTorch对NaN值的处理方式可能存在差异,特别是在某些版本中,NaN值会通过计算图传播,导致整个输出变为NaN。
-
Python环境差异:有用户报告在Python 3.7环境下运行正常,而在Python 3.8环境下会出现此问题,表明环境依赖可能影响数值稳定性。
解决方案
针对这一问题,社区提出了几种有效的解决方案:
-
显式处理NaN值: 在模型的
train_epoch和test_epoch方法中,添加显式的NaN值处理代码:feature = torch.nan_to_num(feature, 0)这会将所有NaN值替换为0,确保输入数据的数值稳定性。
-
增加训练轮次: 有用户发现即使前几轮出现NaN,继续训练10轮左右后模型会恢复正常。这表明NaN可能是初期数值不稳定导致的暂时现象。
-
检查数据预处理: 确保在数据加载阶段正确配置了fillna参数,或者在自定义数据处理器中显式处理缺失值。
-
环境配置检查: 使用较新的PyTorch版本,并确保Python环境的一致性,特别是对于生产环境部署。
最佳实践建议
-
数据质量检查:在模型训练前,应该对输入数据进行全面的质量检查,包括缺失值、异常值和数据分布。
-
数值稳定性措施:考虑在模型中添加梯度裁剪、权重初始化检查等数值稳定性措施。
-
日志监控:实现更详细的训练过程监控,包括每层的输入输出范围检查,便于早期发现问题。
-
单元测试:为关键的数据预处理和模型组件编写单元测试,确保在各种边界条件下都能正确处理。
总结
QLib框架中的LSTM模型NaN问题是一个典型的数据处理和数值稳定性问题。通过显式处理缺失值、确保环境一致性以及采用适当的训练策略,可以有效解决这一问题。这也提醒我们在开发机器学习系统时,数据质量检查和数值稳定性处理是不可或缺的重要环节。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00