DeepGEMM项目中非常规维度矩阵乘法的优化实践
2025-06-08 02:13:55作者:丁柯新Fawn
在深度学习框架的优化过程中,矩阵乘法(GEMM)作为基础运算的性能优化至关重要。本文以DeepGEMM项目中一个典型场景为例,探讨非常规维度矩阵乘法的处理策略。
问题背景
在注意力机制模块的实现中,存在一个线性变换层,其输入维度din=7168,输出维度dout=576。在进行反向传播计算梯度dx时,需要执行形状为(seq_len, 576)与(576, 7168)的矩阵乘法。然而,DeepGEMM内核实现对于矩阵乘法的k维度(即中间维度)有特殊要求:必须能被128整除。
技术挑战
- 硬件优化限制:现代GPU架构对矩阵运算有特定的内存对齐要求,128的倍数通常能更好地利用SIMD指令和内存带宽
- 性能影响:不符合对齐要求的维度可能导致计算效率显著下降
- 实现复杂性:直接填充会导致额外的内存开销和计算浪费
解决方案
DeepGEMM团队采用了以下优化策略:
- 内核优化:通过修改底层实现,原生支持7168这样的非常规维度
- 算法改进:重新组织计算流程,避免显式的填充操作
- 内存访问优化:调整数据布局,确保即使在不完全对齐的情况下也能保持较高的内存访问效率
实现细节
该优化主要涉及:
- 动态调整计算块大小
- 改进寄存器分配策略
- 优化共享内存使用模式
- 实现更灵活的分块算法
性能考量
相比传统的填充方案,这种原生支持的方式具有明显优势:
- 避免了约5.6%的计算浪费(7168 vs 填充到7296)
- 减少了约5.6%的内存占用
- 保持了计算的高效性
结论
DeepGEMM的这一优化展示了深度学习框架在面对非常规计算维度时的灵活处理能力。通过底层内核的针对性优化,既保持了计算精度,又确保了高性能,为类似场景提供了有价值的参考方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355