BlockNote项目中区分用户输入与自动更新的技术实践
2025-05-28 12:54:41作者:乔或婵
BlockNote
A "Notion-style" block-based extensible text editor built on top of Prosemirror and Tiptap.
在富文本编辑器开发过程中,处理文档更新来源的区分是一个常见的技术挑战。本文将以BlockNote项目为例,深入探讨如何优雅地区分用户输入和程序自动更新,避免不必要的渲染循环和数据同步问题。
核心问题场景
当开发者使用BlockNote编辑器时,可能会遇到这样的典型场景:
- 从服务器获取数据后,通过
editor.replaceBlocks方法更新编辑器内容 - 这个自动更新操作会触发
onChange事件 - 而
onChange监听器又用于将用户输入实时同步到数据库 - 最终导致文档被多次渲染的循环问题
技术解决方案
方案一:预加载数据模式
推荐的最佳实践是在编辑器初始化前完成数据加载:
// 推荐做法:先加载数据再初始化编辑器
const fetchDataAndInitEditor = async () => {
const loading = true;
const initialData = await fetchDataFromServer();
const editor = useCreateBlockNote({ initialContent: initialData });
loading = false;
return (
{loading ? <LoadingSpinner /> : <BlockNoteView editor={editor} />}
);
}
这种模式的优势在于:
- 避免了编辑器初始化后的内容替换操作
- 消除了自动更新触发onChange的可能性
- 提供了更好的用户体验(明确的加载状态)
方案二:更新来源标记法
如果必须在运行时更新内容,可以采用标记法区分来源:
let isProgrammaticUpdate = false;
const handleEditorUpdate = () => {
if (isProgrammaticUpdate) {
isProgrammaticUpdate = false;
return;
}
// 处理真正的用户输入
};
const updateContent = (newBlocks) => {
isProgrammaticUpdate = true;
editor.replaceBlocks(newBlocks);
};
方案三:版本控制法
对于复杂场景,可以引入版本控制机制:
let documentVersion = 0;
let lastHandledVersion = 0;
editor.onChange(() => {
if (documentVersion !== lastHandledVersion) {
lastHandledVersion = documentVersion;
return;
}
// 处理用户输入
documentVersion++;
});
const programmaticUpdate = (content) => {
documentVersion++;
editor.replaceBlocks(content);
};
技术原理深度解析
BlockNote的更新机制基于ProseMirror,其核心特点是:
- 所有文档变更都会生成事务(Transaction)
- 事务会触发编辑器状态更新
- 状态更新会传播到视图层
- 视图更新又会触发各种钩子(包括onChange)
理解这个流程后,我们就能明白为何自动更新也会触发onChange事件。解决方案的本质都是在这条传播链上添加识别标记。
性能优化建议
- 批量更新:对于需要频繁自动更新的场景,使用
editor.freeze()和editor.unfreeze()临时禁用事件 - 节流处理:对onChange处理器添加适当的节流逻辑
- 差异比对:在更新前比较新旧内容,避免不必要的DOM操作
总结
在BlockNote编辑器中正确处理自动更新与用户输入的关键在于:
- 优先考虑初始化时加载完整数据
- 必要时使用明确的更新来源标记
- 理解底层编辑器的事件传播机制
- 根据实际场景选择合适的优化策略
这些实践不仅适用于BlockNote,对于其他富文本编辑器开发也具有参考价值。正确的更新处理能够显著提升应用性能和用户体验。
BlockNote
A "Notion-style" block-based extensible text editor built on top of Prosemirror and Tiptap.
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492