Agno项目中基于相似度阈值实现智能RAG响应切换的技术方案
2025-05-07 00:50:18作者:温艾琴Wonderful
在构建基于检索增强生成(RAG)的智能应用时,一个常见挑战是如何处理知识库中不存在相关信息的查询场景。本文深入探讨了在Agno项目中实现智能响应切换的技术方案,通过引入相似度阈值机制,使系统能够根据检索结果的相关性动态决定是否使用知识库内容。
问题背景与挑战
传统RAG系统面临的核心问题之一是"知识边界"处理。当用户查询超出知识库覆盖范围时,系统通常会强制返回低相关性结果或完全无法响应。这种"全有或全无"的模式严重影响了用户体验。
在Agno项目的实际应用中,开发者发现单纯依赖提示工程(Prompt Engineering)难以完美解决这一问题。系统需要更底层的机制来控制知识检索与LLM生成之间的切换逻辑。
技术方案设计
相似度阈值机制
核心思想是引入可配置的相似度阈值参数(min_similarity或max_distance),系统在运行时将检索结果的相似度分数与该阈值比较:
- 当最高相似度得分≥阈值时,使用检索到的文档增强生成
- 当所有结果得分<阈值时,绕过知识库直接使用LLM的通用能力生成响应
这种设计实现了"软切换"而非硬性依赖,使系统行为更加符合人类预期。
混合检索实现
参考社区贡献的ScoredPgVector实现,展示了如何扩展基础检索功能:
class ScoredPgVector(PgVector):
async def hybrid_search(self, query: str, limit: int = 3, **kwargs):
# 生成查询向量
embeddings = self.embedder.get_embedding(query)
# 计算语义相似度
semantic_score = self.table.c.embedding.cosine_distance(embeddings)
# 计算关键词相关性
ts_vector = func.to_tsvector(language, self.table.c.content)
ts_query = func.plainto_tsquery(language, query)
keyword_score = func.ts_rank_cd(ts_vector, ts_query)
# 混合评分(0.7语义 + 0.3关键词)
hybrid_score = 0.7*(1-semantic_score) + 0.3*func.coalesce(keyword_score,0)
# 将评分存入文档元数据
doc.metadata["hybrid_score"] = hybrid_score
return search_results
该实现创新性地将以下技术结合:
- 向量相似度计算(余弦距离)
- 全文检索相关性(TSRank)
- 可配置的权重混合策略
工程实践建议
在实际部署时,开发者应注意:
- 阈值调优:通过A/B测试确定最佳阈值,通常建议初始值为0.6-0.7
- 混合权重:根据领域特点调整语义与关键词的权重比例
- 性能监控:记录阈值决策日志,持续优化切换策略
- 降级处理:当检索系统异常时自动切换至纯LLM模式
未来演进方向
该技术方案可进一步扩展为:
- 动态阈值机制:根据查询复杂度自动调整阈值
- 多级知识库:构建分层知识体系,实现更精细的检索控制
- 反馈学习:根据用户交互数据持续优化阈值参数
总结
Agno项目通过引入相似度阈值机制,为RAG系统提供了更智能的知识利用策略。这种方案平衡了知识准确性与回答覆盖率,显著提升了系统在开放域场景下的表现。该设计模式也可为其他检索增强型系统提供参考,是构建生产级AI应用的重要实践。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30