EvalAI项目远程评估任务结果格式问题解析
2025-07-07 05:24:50作者:仰钰奇
在基于EvalAI平台搭建机器学习竞赛时,远程评估任务的结果格式配置是一个关键环节。本文将通过一个典型案例,深入分析评估结果与平台对接过程中的常见问题及解决方案。
问题现象分析
开发者在配置远程评估任务时遇到两个典型问题:
- 提交评估时返回400错误,提示"Bad Request"
- 评估完成后结果文件生成但排行榜不显示数据
通过日志可见,初始的结果数据结构为多层嵌套格式:
{
'train_split': {...},
'test_split': {...}
}
数据结构优化
正确的评估结果应采用扁平化结构。修改后的有效格式示例:
[{
'final_train_loss': 6.025793465431145e-05,
'final_val_loss': 0.00013760417953432937,
'Metric3': 123,
'Total': 123
}]
排行榜配置要点
对应的排行榜schema配置需要特别注意:
- labels字段必须与结果字段完全匹配
- 每个指标可配置排序方式和描述信息
- 默认排序字段需存在于结果中
典型配置示例:
leaderboard:
- id: 1
schema:
{
"labels": ["final_train_loss","final_val_loss","Metric3","Total"],
"default_order_by": "final_val_loss",
"metadata": {
"final_val_loss": {
"sort_ascending": True,
"description": "训练线性探测层时的最终验证损失"
}
}
}
最佳实践建议
- 数据结构验证:确保评估脚本输出的JSON与schema定义完全兼容
- 字段一致性:检查结果字典key与labels配置的完全匹配
- 类型检查:数值指标应确保为基本数据类型(int/float)
- 日志分析:通过worker日志验证数据传递全过程
- 分阶段测试:先验证简单数据结构,再逐步增加复杂度
总结
EvalAI平台的评估结果处理需要严格遵循数据格式规范。开发者应当特别注意结果字典的扁平化结构设计,并确保与排行榜配置的字段完全对应。通过结构化日志分析和分阶段验证,可以有效解决评估结果展示异常的问题。对于复杂评估场景,建议先在本地模拟评估流程,验证数据格式正确性后再部署到生产环境。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100