DI-engine中Noisy Net实现的技术分析与改进
2025-06-24 13:52:32作者:侯霆垣
在深度强化学习框架DI-engine中,Noisy Net(噪声网络)是一种重要的探索机制实现方式。本文将从技术原理和实现细节两个维度,深入分析该机制的正确实现方式及其在DI-engine中的改进过程。
Noisy Net技术原理
Noisy Net是深度强化学习中一种优雅的探索方法,其核心思想是通过在神经网络权重中注入参数化噪声来实现探索。与传统ε-greedy等启发式探索方法不同,Noisy Net具有以下优势:
- 状态相关的探索:噪声与网络状态相关,能够实现更智能的探索策略
- 端到端训练:探索策略可以直接通过梯度下降进行优化
- 无需手动调整:消除了ε衰减等超参数调优需求
关键技术实现要点包括:
- 噪声层替代传统全连接层
- 使用因式分解的高斯噪声提高计算效率
- 训练阶段保持噪声激活
- 评估阶段关闭噪声实现确定性策略
DI-engine中的实现问题
在原始实现中,DI-engine存在一个关键实现偏差:在collect_model(收集经验用的模型)中禁用了噪声注入。这与Noisy Net的设计初衷相违背,因为:
- 收集阶段正是需要探索的关键环节
- 评估阶段才需要关闭噪声以获得确定性策略
- 这种实现会导致探索不足,影响算法性能
正确的实现应该保持collect_model的噪声激活,仅在eval_model(评估模型)中禁用噪声。这与原始论文中"在在线网络中使用独立噪声样本进行动作选择,在目标网络中使用不同噪声样本"的设计一致。
技术改进方案
针对这一问题,技术团队进行了以下改进:
- 修改噪声注入逻辑,确保collect_model保持噪声激活
- 严格在eval_model中禁用噪声
- 保持噪声样本的独立性:
- 在线网络使用ε′噪声样本
- 目标网络使用ε′′噪声样本
- 优化噪声参数更新机制
改进后的实现更符合Noisy Net的理论设计,能够:
- 在训练阶段提供充分的探索
- 在评估阶段提供稳定的策略表现
- 保持不同网络间噪声样本的独立性
实际影响与验证
该改进已在Atari等基准测试环境中得到验证,证实了:
- 改进后的探索效率显著提升
- 算法最终性能更加稳定
- 训练曲线更加平滑
这种实现方式也更符合现代深度强化学习算法对探索机制的要求,为后续算法开发提供了更可靠的基础设施。
最佳实践建议
基于此改进,我们建议DI-engine用户:
- 在使用Noisy Net时检查噪声注入模式
- 确保collect阶段噪声激活
- 验证eval阶段噪声禁用
- 监控探索效率指标
正确的Noisy Net实现能够显著提升算法在复杂环境中的探索能力,是深度强化学习实践中不可忽视的重要细节。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19