FlagEmbedding项目:如何正确从检查点恢复模型训练
2025-05-24 05:37:42作者:史锋燃Gardner
在深度学习模型训练过程中,经常会遇到需要从之前的检查点(checkpoint)恢复训练的情况。FlagEmbedding作为一款优秀的嵌入模型训练框架,提供了完善的检查点恢复机制,但需要正确使用才能发挥其效果。
检查点恢复的常见误区
许多用户在尝试从检查点恢复训练时,会遇到以下两个典型问题:
- 虽然模型权重成功加载了,但训练时的epoch计数和学习率调度却从零开始
- 直接使用model_name_or_path参数指定检查点路径,但训练状态没有正确恢复
这些问题通常是由于对恢复机制理解不深或参数设置不当导致的。
正确的恢复方法
FlagEmbedding基于Hugging Face的Trainer实现,要正确恢复训练,应当使用专门的resume_from_checkpoint参数。具体操作要点如下:
- 确保指定的是具体的检查点子目录(如checkpoint-1000),而不是上级目录
- 在训练命令中添加
--resume_from_checkpoint <CKPT_PATH>参数 - 系统会自动恢复包括以下内容:
- 模型权重
- 优化器状态
- 学习率调度器状态
- 训练步数(step)和周期(epoch)计数
技术实现原理
当使用resume_from_checkpoint参数时,FlagEmbedding会:
- 从指定目录加载model.safetensors或pytorch_model.bin文件恢复模型权重
- 加载optimizer.pt恢复优化器状态(如动量等)
- 加载scheduler.pt恢复学习率调度器状态
- 读取trainer_state.json获取之前的训练进度信息
这种机制确保了训练过程能够精确地从中断处继续,而不是简单地重新开始。
最佳实践建议
- 定期保存检查点:设置合理的
save_steps或save_strategy参数 - 检查点目录结构:确认恢复路径包含所有必要的状态文件
- 验证恢复效果:恢复后检查第一个batch的loss是否与之前连贯
- 日志记录:比较恢复前后的训练日志确保连续性
通过正确理解和使用FlagEmbedding的检查点恢复机制,研究人员可以更高效地利用计算资源,避免重复训练带来的时间浪费。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140