FlagEmbedding项目:如何正确从检查点恢复模型训练
2025-05-24 11:23:17作者:史锋燃Gardner
在深度学习模型训练过程中,经常会遇到需要从之前的检查点(checkpoint)恢复训练的情况。FlagEmbedding作为一款优秀的嵌入模型训练框架,提供了完善的检查点恢复机制,但需要正确使用才能发挥其效果。
检查点恢复的常见误区
许多用户在尝试从检查点恢复训练时,会遇到以下两个典型问题:
- 虽然模型权重成功加载了,但训练时的epoch计数和学习率调度却从零开始
- 直接使用model_name_or_path参数指定检查点路径,但训练状态没有正确恢复
这些问题通常是由于对恢复机制理解不深或参数设置不当导致的。
正确的恢复方法
FlagEmbedding基于Hugging Face的Trainer实现,要正确恢复训练,应当使用专门的resume_from_checkpoint参数。具体操作要点如下:
- 确保指定的是具体的检查点子目录(如checkpoint-1000),而不是上级目录
- 在训练命令中添加
--resume_from_checkpoint <CKPT_PATH>参数 - 系统会自动恢复包括以下内容:
- 模型权重
- 优化器状态
- 学习率调度器状态
- 训练步数(step)和周期(epoch)计数
技术实现原理
当使用resume_from_checkpoint参数时,FlagEmbedding会:
- 从指定目录加载model.safetensors或pytorch_model.bin文件恢复模型权重
- 加载optimizer.pt恢复优化器状态(如动量等)
- 加载scheduler.pt恢复学习率调度器状态
- 读取trainer_state.json获取之前的训练进度信息
这种机制确保了训练过程能够精确地从中断处继续,而不是简单地重新开始。
最佳实践建议
- 定期保存检查点:设置合理的
save_steps或save_strategy参数 - 检查点目录结构:确认恢复路径包含所有必要的状态文件
- 验证恢复效果:恢复后检查第一个batch的loss是否与之前连贯
- 日志记录:比较恢复前后的训练日志确保连续性
通过正确理解和使用FlagEmbedding的检查点恢复机制,研究人员可以更高效地利用计算资源,避免重复训练带来的时间浪费。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56