Jetson-containers项目中的Llama-factory容器VLLM推理支持适配
在Jetson AGX Orin等边缘计算设备上部署大型语言模型(LLM)时,内存管理和计算资源优化是关键挑战。本文探讨了如何在jetson-containers项目中为Llama-factory容器添加VLLM推理支持的技术实现方案。
内存管理优化
在Jetson Orin NX 16G设备上构建VLLM时,编译过程经常因内存不足而失败。通过增加虚拟内存交换空间可以有效解决这个问题。具体操作包括:
- 创建交换文件
- 设置适当的交换空间大小
- 激活交换分区
这一优化使得原本因内存不足而失败的编译过程能够顺利完成,为后续的模型部署奠定了基础。
PyTorch版本兼容性问题
在适配过程中发现,VLLM 0.6.3版本需要特定版本的PyTorch支持。测试显示PyTorch 2.2.0存在兼容性问题,具体表现为:
AttributeError: module 'torch.library' has no attribute 'custom_op'
这是因为VLLM使用了PyTorch的高级API特性,而早期版本的PyTorch尚未实现这些接口。解决方案是确保使用兼容的PyTorch版本,通常需要PyTorch 2.3.1或更高版本。
VLLM构建过程优化
VLLM的构建过程涉及多个CUDA内核编译,对设备资源要求较高。关键优化点包括:
- 并行编译任务数调整
- CUDA架构标志正确设置
- 内存使用监控和限制
特别需要注意的是,VLLM的注意力机制实现依赖Flash Attention等优化技术,这些组件的编译需要特殊处理。
容器化部署方案
最终的解决方案将VLLM 0.6.3集成到Llama-factory容器中,主要技术特点包括:
- 基于jetson-containers项目的基础镜像
- 优化的构建脚本处理依赖关系
- 完整的测试验证流程
这一方案已经在Jetson AGX Orin上验证通过,能够支持GGUF格式模型的推理任务。
性能考量
在边缘设备上部署LLM时,需要特别注意:
- 内存带宽限制
- 计算单元利用率
- 量化方案选择
VLLM相比传统推理方案,在内存管理和计算调度方面有显著优化,特别适合资源受限的边缘计算场景。
结论
通过系统性的问题分析和解决方案实施,成功在jetson-containers项目中为Llama-factory容器添加了VLLM推理支持。这一成果为在Jetson系列设备上高效部署大型语言模型提供了可靠的技术方案,扩展了边缘AI的应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00