【免费下载】 BioBERT-PyTorch 使用教程
1. 项目介绍
BioBERT-PyTorch 是基于 PyTorch 实现的 BioBERT 模型。BioBERT 是一个专门为生物医学文本挖掘设计的预训练语言表示模型。该项目由 DMIS-Lab @ Korea University 的成员支持,包括 Jinhyuk Lee、Wonjin Yoon、Minbyul Jeong、Mujeen Sung 和 Gangwoo Kim。
BioBERT-PyTorch 提供了多种版本的 BioBERT 模型,支持命名实体识别(NER)、问答(QA)和关系提取(RE)等任务。用户可以通过 Hugging Face 的 transformers 库轻松使用这些模型。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 transformers 库和 torch。你可以通过以下命令安装这些依赖:
pip install transformers==3.0.0
pip install torch
下载数据集
BioBERT-PyTorch 提供了下载数据集的脚本。你可以通过以下命令下载所有数据集:
./download.sh
如果脚本无法正常工作,你可以手动下载数据集并解压缩到当前目录:
tar -xzvf datasets.tar.gz
使用 BioBERT 进行 NER 任务
以下是一个使用 BioBERT 进行命名实体识别(NER)任务的示例代码:
# 预处理 NER 数据集
cd named-entity-recognition
./preprocess.sh
# 设置数据集目录和实体类型
export DATA_DIR=./datasets/NER
export ENTITY=NCBI-disease
# 运行 NER 任务
python run_ner.py \
--data_dir $DATA_DIR/$ENTITY \
--labels $DATA_DIR/$ENTITY/labels.txt \
--model_name_or_path dmis-lab/biobert-base-cased-v1.1 \
--output_dir output/$ENTITY \
--max_seq_length 128 \
--num_train_epochs 3 \
--per_device_train_batch_size 32 \
--save_steps 1000 \
--seed 1 \
--do_train \
--do_eval \
--do_predict \
--overwrite_output_dir
3. 应用案例和最佳实践
命名实体识别(NER)
BioBERT 在生物医学领域的命名实体识别任务中表现出色。例如,在 NCBI-disease 数据集上,BioBERT 可以准确识别出疾病相关的实体。
问答(QA)
BioBERT 还可以用于生物医学领域的问答系统。通过预训练的 BioBERT 模型,可以构建一个能够回答生物医学相关问题的系统。
关系提取(RE)
BioBERT 在关系提取任务中也有很好的表现。例如,可以用于提取生物医学文献中的实体之间的关系。
4. 典型生态项目
Hugging Face Transformers
BioBERT-PyTorch 依赖于 Hugging Face 的 transformers 库。该库提供了丰富的预训练模型和工具,方便用户快速构建和部署自然语言处理应用。
PyTorch
BioBERT-PyTorch 基于 PyTorch 框架实现。PyTorch 是一个广泛使用的深度学习框架,提供了灵活的 API 和强大的计算能力。
BioBERT
BioBERT 是该项目的基础模型,提供了多种预训练版本,适用于不同的生物医学任务。用户可以根据具体需求选择合适的 BioBERT 版本。
通过以上模块的介绍和示例,你可以快速上手使用 BioBERT-PyTorch 进行生物医学文本挖掘任务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235B暂无简介Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00