Drift 数据库:深入理解自定义行类与插入操作的交互机制
2025-06-28 18:44:02作者:庞队千Virginia
在 Dart 生态中,Drift(原名 Moor)是一个功能强大的 SQLite 数据库库,它通过代码生成简化了数据库操作。本文将重点探讨 Drift 中自定义行类(row class)与插入操作(Insertable)之间的交互机制,帮助开发者更好地理解和使用这一特性。
自定义行类的基本用法
Drift 允许开发者通过 @UseRowClass
注解将表映射到自定义的 Dart 类。例如:
@UseRowClass(User)
class Users extends Table {
IntColumn get id => integer().autoIncrement()();
TextColumn get some => text()();
TextColumn get some2 => text()();
}
对应的 User
类通常需要实现 Insertable<User>
接口,以便可以直接用于数据库操作:
class User implements Insertable<User> {
User({required this.id, required this.some, required this.some2});
final int id;
final String some;
final String some2;
@override
Map<String, Expression> toColumns(bool nullToAbsent) {
return UsersCompanion(
id: Value(id),
some: Value(some),
some2: Value(some2),
).toColumns(nullToAbsent);
}
}
构造函数参数与表列的对应关系
一个常见的问题是构造函数参数是否需要包含表中所有列。实际上,Drift 并不强制要求构造函数包含所有列,但需要注意以下几点:
- 数据完整性:如果构造函数不包含某些列,这些列将不会被初始化,可能导致数据不一致
- 插入操作:
toColumns
方法需要正确处理所有需要插入的列
例如,以下实现是可行的:
class User implements Insertable<User> {
User({required this.id, required this.some, String? some2})
: some2 = some2 ?? some;
final int id;
final String some;
final String some2;
@override
Map<String, Expression> toColumns(bool nullToAbsent) {
return UsersCompanion(
id: Value(id),
some: Value(some),
some2: Value(some2),
).toColumns(nullToAbsent);
}
}
生成 Insertable 实现
Drift 提供了 generateInsertable: true
选项来自动生成 Insertable
实现:
@UseRowClass(User, generateInsertable: true)
class Users extends Table {
// 列定义...
}
生成的代码会创建一个 _$UserInsertable
类,它实现了 Insertable<User>
接口。需要注意的是:
- 如果自定义类已经实现了
Insertable
,应该直接使用该实现 - 生成的方法仅包含构造函数中存在的属性
最佳实践
- 明确使用场景:如果自定义类需要特殊处理插入逻辑,应自行实现
Insertable
- 保持一致性:确保构造函数参数和
toColumns
方法处理的列一致 - 避免混淆:理解
toInsertable()
扩展方法的作用,不要误用它替代自定义实现 - 数据完整性:考虑所有表列在对象中的表示方式,避免数据丢失
常见误区
- 误认为必须初始化所有列:实际上构造函数可以只包含部分列,但需要确保
toColumns
正确处理 - 混淆生成代码和自定义代码:自定义
Insertable
实现优先于生成的代码 - 过度依赖生成代码:对于复杂逻辑,应该考虑自定义实现
理解这些概念和机制将帮助开发者更有效地使用 Drift 进行数据库操作,构建更健壮的应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133