使用Create React App与服务器集成实战:food-lookup-demo指南
项目介绍
food-lookup-demo 是一个示例项目,展示了如何在 create-react-app 环境下搭建并运行一个结合了后端API服务器的全栈应用。它特别地,采用了Node.js的Express框架作为后端服务,并通过Webpack的代理功能解决了开发环境下的跨域问题。本项目适合那些希望学习前后端分离技术栈的开发者。
项目快速启动
克隆项目
首先,确保你的机器上安装了Git、Node.js和npm。然后,通过以下命令克隆项目到本地:
git clone https://github.com/fullstackreact/food-lookup-demo.git
cd food-lookup-demo
安装依赖
进入项目目录后,分别安装客户端与服务器端的依赖:
# 在根目录安装服务器端依赖(如果需要)
cd server
npm install
cd ../client
npm install
运行项目
为了同时启动前端与后端服务,可以使用如下命令:
cd ..
npm start
这将利用concurrently
管理器同时启动Webpack开发服务器和Express服务器。默认情况下,前端应用会运行在http://localhost:3000
,而API请求会被自动代理到http://localhost:3001
。
应用案例和最佳实践
在food-lookup-demo中,最佳实践体现在几个方面:
- 环境变量处理:利用
process.env.NODE_ENV
来区分开发与生产环境。 - 代理配置:通过
client/package.json
中的"proxy"字段避免了跨域问题,简化开发流程。 - 过程管理:使用
concurrently
工具同时启动前后端服务,提高开发效率。 - 静态资源部署:生产部署时,确保React应用被构建并正确托管。
实践演示
假设你需要查询食物信息,项目内的API接口能够接受查询参数,模拟这一过程,你可以使用类似以下的客户端调用:
fetch(`/api/food?q=${encodeURIComponent('苹果')}`)
.then(response => response.json())
.then(data => console.log(data));
典型生态项目
虽然本项目是围绕React和Express的简单整合,但它启发了更广泛的生态系统结合方式。比如,结合其他数据库(如MongoDB或PostgreSQL)、引入身份验证(JWT、OAuth)或者利用云平台进行部署(Heroku、AWS等)。此外,对于那些偏好Ruby on Rails作为后端的开发者,存在类似的示范项目food-lookup-demo-rails,展示相似的集成方法但采用Rails作为后端。
这个指导文档提供了快速理解和上手food-lookup-demo
项目的基础路径,帮助你了解其核心概念和操作步骤,同时也展示了全栈开发的基本模式和最佳实践。通过这个项目,开发者可以深入学习到现代web应用开发中的关键技术和策略。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









