使用Create React App与服务器集成实战:food-lookup-demo指南
项目介绍
food-lookup-demo 是一个示例项目,展示了如何在 create-react-app 环境下搭建并运行一个结合了后端API服务器的全栈应用。它特别地,采用了Node.js的Express框架作为后端服务,并通过Webpack的代理功能解决了开发环境下的跨域问题。本项目适合那些希望学习前后端分离技术栈的开发者。
项目快速启动
克隆项目
首先,确保你的机器上安装了Git、Node.js和npm。然后,通过以下命令克隆项目到本地:
git clone https://github.com/fullstackreact/food-lookup-demo.git
cd food-lookup-demo
安装依赖
进入项目目录后,分别安装客户端与服务器端的依赖:
# 在根目录安装服务器端依赖(如果需要)
cd server
npm install
cd ../client
npm install
运行项目
为了同时启动前端与后端服务,可以使用如下命令:
cd ..
npm start
这将利用concurrently管理器同时启动Webpack开发服务器和Express服务器。默认情况下,前端应用会运行在http://localhost:3000,而API请求会被自动代理到http://localhost:3001。
应用案例和最佳实践
在food-lookup-demo中,最佳实践体现在几个方面:
- 环境变量处理:利用
process.env.NODE_ENV来区分开发与生产环境。 - 代理配置:通过
client/package.json中的"proxy"字段避免了跨域问题,简化开发流程。 - 过程管理:使用
concurrently工具同时启动前后端服务,提高开发效率。 - 静态资源部署:生产部署时,确保React应用被构建并正确托管。
实践演示
假设你需要查询食物信息,项目内的API接口能够接受查询参数,模拟这一过程,你可以使用类似以下的客户端调用:
fetch(`/api/food?q=${encodeURIComponent('苹果')}`)
.then(response => response.json())
.then(data => console.log(data));
典型生态项目
虽然本项目是围绕React和Express的简单整合,但它启发了更广泛的生态系统结合方式。比如,结合其他数据库(如MongoDB或PostgreSQL)、引入身份验证(JWT、OAuth)或者利用云平台进行部署(Heroku、AWS等)。此外,对于那些偏好Ruby on Rails作为后端的开发者,存在类似的示范项目food-lookup-demo-rails,展示相似的集成方法但采用Rails作为后端。
这个指导文档提供了快速理解和上手food-lookup-demo项目的基础路径,帮助你了解其核心概念和操作步骤,同时也展示了全栈开发的基本模式和最佳实践。通过这个项目,开发者可以深入学习到现代web应用开发中的关键技术和策略。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00