embed 的项目扩展与二次开发
2025-05-20 05:43:46作者:晏闻田Solitary
项目的基础介绍
embed 是一个由 tidymodels 团队开发的开源 R 包,它为 recipes 包提供了额外的步骤,用于将预测因子嵌入到一个或多个数值列中。该项目主要关注于监督学习中的预处理方法,其设计理念是为了简化机器学习工作流程中的数据预处理步骤。
项目的核心功能
embed 包的核心功能包括处理分类预测因子和数值预测因子的多种步骤。对于分类预测因子,它提供了如 step_lencode_glm()、step_lencode_bayes() 和 step_lencode_mixed() 等步骤,这些步骤通过广义线性模型估计因子水平对结果的影响,并使用这些估计作为新的编码。而对于数值预测因子,它提供了如 step_umap()、step_discretize_xgb()、step_discretize_cart() 等步骤,用于进行非线性转换和基于监督树模型的分箱处理。
项目使用了哪些框架或库?
embed 项目主要使用 R 语言开发,依赖于以下框架或库:
- recipes:提供数据预处理和特征工程的框架。
- rstanarm:用于拟合贝叶斯统计模型的库。
- lme4:用于线性混合效应模型的库。
- keras3:提供深度学习模型的库。
- rpart:用于决策树的库。
- xgboost:用于梯度提升树的库。
项目的代码目录及介绍
embed 项目的代码目录结构清晰,主要包括以下部分:
- R:包含 R 函数和模型的定义。
- data:包含用于测试和示例的数据集。
- man:包含文档和帮助文件。
- tests:包含项目的单元测试代码。
- vignettes:包含项目案例研究和使用说明的文档。
对项目进行扩展或者二次开发的方向
- 增加新的嵌入步骤:可以根据需求增加新的嵌入步骤,以支持更多的监督学习预处理方法。
- 优化现有步骤:对现有步骤的性能和准确性进行优化,提高其适用性和鲁棒性。
- 扩展支持的数据类型:目前 embed 主要是针对分类和数值预测因子,可以考虑增加对文本和图像数据类型的支持。
- 增强可定制性:提供更多的参数和配置选项,使用户可以根据具体场景定制预处理流程。
- 集成其他机器学习库:考虑与其他机器学习库的集成,如 scikit-learn、TensorFlow 和 PyTorch 等,以支持更广泛的应用场景。
通过以上方向的扩展或二次开发,embed 项目将能够更好地服务于数据科学和机器学习社区,提高数据预处理的效率和效果。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137