Linkerd CNI插件在AWS EKS集群中的部署问题及解决方案
问题背景
在AWS EKS环境中部署Linkerd CNI插件版本2025.3.1时,用户遇到了与之前版本13760类似的问题。当尝试将linkerd-cni从v2025.2.3升级到v2025.3.1时,DaemonSet的首次Pod启动失败,导致整个升级过程受阻。
错误现象
部署过程中,Kubernetes事件日志显示以下关键错误信息:
Failed to create pod sandbox: rpc error: code = Unknown desc = failed to setup network for sandbox "41b3c75a...": plugin type="linkerd-cni" name="linkerd-cni" failed (add): Unauthorized
环境信息
- Kubernetes版本:AWS EKS 1.31
- Linkerd版本:v2.17.1
- Linkerd CNI版本:v2025.3.1
- 操作系统:Bottlerocket
问题分析
通过深入分析,我们发现问题的根源在于CNI配置文件中存在冲突。在AWS EKS环境中,当同时使用Cilium和AWS CNI插件时,Linkerd CNI插件的配置可能导致授权问题。具体表现为:
-
节点上的
/etc/cni/net.d/目录包含三个关键文件:05-cilium.conflist10-aws.conflistZZZ-linkerd-cni-kubeconfig
-
在
05-cilium.conflist文件中,存在对Linkerd CNI插件的引用,这导致了插件初始化时的授权冲突。
解决方案
对于使用Bottlerocket操作系统的AWS EC2实例,可以按照以下步骤解决问题:
- 获取每个EC2实例的shell访问权限
- 执行
enter-admin-container命令进入管理容器 - 编辑
/.bottlerocket/rootfs/etc/cni/net.d/05-cilium.conflist文件 - 移除文件中与
linkerd-cni相关的插件配置 - 在EKS中重启对应的linkerd-cni Pod
需要注意的是,这个过程需要在集群中的每个节点上逐一执行,同时确保每次只处理一个节点,以避免服务中断。
技术原理
Linkerd CNI插件作为服务网格的一部分,负责处理Pod间的网络通信。当多个CNI插件共存时,可能会出现配置冲突。在这种情况下,Cilium CNI插件配置中包含了Linkerd CNI的引用,导致授权检查失败。
Bottlerocket作为专门为容器工作负载设计的操作系统,其文件系统结构与传统Linux发行版有所不同。解决方案中提到的路径/.bottlerocket/rootfs/是访问主机文件系统的特殊方式。
最佳实践建议
- 在升级Linkerd CNI插件前,建议先备份所有CNI配置文件
- 考虑使用自动化工具批量处理多节点配置变更
- 对于生产环境,建议先在测试环境中验证升级过程
- 定期检查CNI插件间的兼容性,特别是当使用多个网络插件时
总结
Linkerd CNI插件在特定环境下的部署问题通常与CNI配置冲突有关。通过理解底层网络插件的工作原理和交互方式,可以有效地解决这类问题。本文提供的解决方案不仅适用于所述版本,其思路也可应用于类似的CNI插件冲突场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00