Linkerd CNI插件在AWS EKS集群中的部署问题及解决方案
问题背景
在AWS EKS环境中部署Linkerd CNI插件版本2025.3.1时,用户遇到了与之前版本13760类似的问题。当尝试将linkerd-cni从v2025.2.3升级到v2025.3.1时,DaemonSet的首次Pod启动失败,导致整个升级过程受阻。
错误现象
部署过程中,Kubernetes事件日志显示以下关键错误信息:
Failed to create pod sandbox: rpc error: code = Unknown desc = failed to setup network for sandbox "41b3c75a...": plugin type="linkerd-cni" name="linkerd-cni" failed (add): Unauthorized
环境信息
- Kubernetes版本:AWS EKS 1.31
- Linkerd版本:v2.17.1
- Linkerd CNI版本:v2025.3.1
- 操作系统:Bottlerocket
问题分析
通过深入分析,我们发现问题的根源在于CNI配置文件中存在冲突。在AWS EKS环境中,当同时使用Cilium和AWS CNI插件时,Linkerd CNI插件的配置可能导致授权问题。具体表现为:
-
节点上的
/etc/cni/net.d/目录包含三个关键文件:05-cilium.conflist10-aws.conflistZZZ-linkerd-cni-kubeconfig
-
在
05-cilium.conflist文件中,存在对Linkerd CNI插件的引用,这导致了插件初始化时的授权冲突。
解决方案
对于使用Bottlerocket操作系统的AWS EC2实例,可以按照以下步骤解决问题:
- 获取每个EC2实例的shell访问权限
- 执行
enter-admin-container命令进入管理容器 - 编辑
/.bottlerocket/rootfs/etc/cni/net.d/05-cilium.conflist文件 - 移除文件中与
linkerd-cni相关的插件配置 - 在EKS中重启对应的linkerd-cni Pod
需要注意的是,这个过程需要在集群中的每个节点上逐一执行,同时确保每次只处理一个节点,以避免服务中断。
技术原理
Linkerd CNI插件作为服务网格的一部分,负责处理Pod间的网络通信。当多个CNI插件共存时,可能会出现配置冲突。在这种情况下,Cilium CNI插件配置中包含了Linkerd CNI的引用,导致授权检查失败。
Bottlerocket作为专门为容器工作负载设计的操作系统,其文件系统结构与传统Linux发行版有所不同。解决方案中提到的路径/.bottlerocket/rootfs/是访问主机文件系统的特殊方式。
最佳实践建议
- 在升级Linkerd CNI插件前,建议先备份所有CNI配置文件
- 考虑使用自动化工具批量处理多节点配置变更
- 对于生产环境,建议先在测试环境中验证升级过程
- 定期检查CNI插件间的兼容性,特别是当使用多个网络插件时
总结
Linkerd CNI插件在特定环境下的部署问题通常与CNI配置冲突有关。通过理解底层网络插件的工作原理和交互方式,可以有效地解决这类问题。本文提供的解决方案不仅适用于所述版本,其思路也可应用于类似的CNI插件冲突场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00