Flutter Rust Bridge 中 Rust 调用 Dart 回调的实现与线程安全
在 Flutter Rust Bridge 项目中,开发者经常需要实现 Rust 与 Dart 之间的双向通信。本文将深入探讨如何在 Rust 中存储和调用 Dart 回调函数,并解决相关的线程安全问题。
问题背景
在跨语言交互中,Rust 调用 Dart 回调是一种常见需求。开发者希望将 Dart 回调函数存储在 Rust 结构中,以便后续调用。这种模式在事件处理等场景中尤为有用。
基础实现
最简单的实现方式是直接定义一个接受 Dart 回调的 Rust 异步函数:
pub async fn rust_function(dart_callback: impl Fn(String) -> DartFnFuture<String>) {
dart_callback("Tom".to_owned()).await;
}
然而,当我们需要将回调存储在结构体中时,情况会变得复杂。
结构体存储回调的实现
为了将回调存储在结构体中,我们需要使用 Arc 和 Mutex 来确保线程安全:
use std::sync::{Arc, Mutex};
use async_trait::async_trait;
use flutter_rust_bridge::DartFnFuture;
pub struct FfiEvent {
msg_cb: Arc<Mutex<Box<dyn Fn(Vec<u8>, String, String) -> DartFnFuture<bool> + Send + 'static>>>,
}
impl FfiEvent {
pub fn new(
msg_cb: impl Fn(Vec<u8>, String, String) -> DartFnFuture<bool> + 'static + Send,
) -> Self {
Self {
msg_cb: Arc::new(Mutex::new(Box::new(msg_cb))),
}
}
}
线程安全问题
上述实现会遇到编译错误,提示 future cannot be sent between threads safely。这是因为标准库的 MutexGuard 在跨 await 点时无法保证 Send 特性。
解决方案:使用 Tokio 的 Mutex
解决方法是使用 Tokio 提供的异步 Mutex,它专为异步上下文设计:
use tokio::sync::Mutex; // 替换标准库的 Mutex
pub struct FfiEvent {
msg_cb: Arc<Mutex<Box<dyn Fn(Vec<u8>, String, String) -> DartFnFuture<bool> + Send + 'static>>>,
}
#[async_trait]
impl Event for FfiEvent {
async fn message_event(&self, from: String, message: Vec<u8>, message_id: String) -> bool {
let cb = self.msg_cb.lock().await; // 注意这里使用 .await 而不是 .unwrap()
cb(message, from, message_id).await
}
}
实现 Event 特质
完整的实现还需要定义一个异步特质 (trait):
#[async_trait]
pub trait Event: Send {
async fn message_event(&self, from: String, message: Vec<u8>, message_id: String) -> bool;
// 其他方法...
}
关键点总结
-
线程安全:在异步环境中,标准库的同步原语可能导致问题,应使用异步友好的替代品。
-
生命周期管理:回调需要明确的
'static生命周期标记,确保它们比持有它们的结构体存活更久。 -
Send 特性:所有跨线程使用的类型都必须实现
Send特性。 -
错误处理:异步锁使用
await而不是unwrap(),因为锁可能被异步地持有。
最佳实践建议
-
对于复杂的回调场景,考虑使用消息通道 (channel) 替代直接回调。
-
在性能敏感的场景,评估锁的开销,可能需要无锁数据结构。
-
为回调添加日志记录,便于调试跨语言调用问题。
-
考虑使用类型别名简化复杂的回调类型签名。
通过以上方法,开发者可以在 Flutter Rust Bridge 项目中安全高效地实现 Rust 调用 Dart 回调的功能,构建强大的跨语言交互系统。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00