EMQX Kubernetes Operator 使用教程
1. 项目介绍
EMQX Kubernetes Operator 是一个用于在 Kubernetes 环境中部署和管理 EMQX 集群的工具。EMQX 是一个高性能的 MQTT 消息代理服务器,广泛应用于物联网(IoT)领域。通过使用 EMQX Kubernetes Operator,用户可以简化 EMQX 集群的部署和管理流程,自动化操作和维护任务,如集群升级、数据持久化等。
EMQX Kubernetes Operator 的主要功能包括:
- 简化部署:通过声明式的方式定义 EMQX 集群,快速部署 EMQX 集群。
- 自动化管理:自动执行集群的升级、数据持久化等操作,确保集群状态与定义一致。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Kubernetes 集群(版本 >= 1.24)
kubectl命令行工具helm包管理工具
2.2 安装 EMQX Kubernetes Operator
首先,添加 EMQX Helm 仓库:
helm repo add emqx https://repos.emqx.io/charts
helm repo update
然后,安装 EMQX Kubernetes Operator:
helm install emqx-operator emqx/emqx-operator
2.3 部署 EMQX 集群
创建一个 YAML 文件 emqx-cluster.yaml,内容如下:
apiVersion: apps.emqx.io/v1beta4
kind: EmqxEnterprise
metadata:
name: emqx-cluster
spec:
replicas: 3
template:
spec:
emqxContainer:
image:
repository: emqx/emqx-ee
version: 4.4.8
应用该配置文件以部署 EMQX 集群:
kubectl apply -f emqx-cluster.yaml
2.4 验证部署
检查 EMQX 集群的状态:
kubectl get pods -l app.kubernetes.io/instance=emqx-cluster
你应该会看到三个 EMQX 实例正在运行。
3. 应用案例和最佳实践
3.1 物联网平台
EMQX Kubernetes Operator 非常适合用于构建物联网平台。通过在 Kubernetes 上部署 EMQX 集群,可以轻松处理大量的 MQTT 连接和消息传输,满足物联网设备的高并发需求。
3.2 实时数据处理
在实时数据处理场景中,EMQX 可以作为消息中间件,将传感器数据实时传输到数据处理系统。EMQX Kubernetes Operator 可以确保 EMQX 集群的高可用性和可扩展性,满足实时数据处理的需求。
4. 典型生态项目
4.1 Prometheus 监控
EMQX 提供了 Prometheus 监控接口,可以通过 Prometheus 和 Grafana 监控 EMQX 集群的运行状态。EMQX Kubernetes Operator 可以与 Prometheus Operator 集成,自动配置监控指标。
4.2 Kafka 集成
EMQX 可以与 Kafka 集成,将 MQTT 消息转发到 Kafka 进行进一步处理。EMQX Kubernetes Operator 可以简化 Kafka 集成的配置,确保消息的可靠传输。
通过以上步骤,你可以快速上手使用 EMQX Kubernetes Operator,并在实际项目中应用它。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00