AutoFixture 使用与技术文档
1. 安装指南
AutoFixture 是通过 NuGet 分发的。要安装 AutoFixture 包,您可以使用 IDE 的内置包管理器、.NET CLI 或者直接在项目文件中引用包。
使用以下命令通过 .NET CLI 安装最新稳定版本的 AutoFixture 包:
dotnet add package AutoFixture
或者,在项目文件中添加以下引用:
<PackageReference Include="AutoFixture" Version="最新版本" />
请将 "最新版本" 替换为当前可用的最新稳定版本号。
2. 项目使用说明
AutoFixture 设计用于提高测试驱动开发的效率,并确保单元测试在重构时更加安全。它通过消除测试夹具设置阶段中手写匿名变量的需要来实现这一目的。AutoFixture 提供了泛型的 测试数据生成器 模式实现。
在编写单元测试时,通常需要创建一些代表测试初始状态的物体。通常,API 会强制您指定比实际需要更多的数据,因此您经常创建对测试没有实际影响的对象,仅仅是为了让代码编译通过。
AutoFixture 可以通过为您创建这样的 匿名变量 来帮助您。
下面是一个简单示例:
[Fact]
public void IntroductoryTest()
{
// Arrange
Fixture fixture = new Fixture();
int expectedNumber = fixture.Create<int>();
MyClass sut = fixture.Create<MyClass>();
// Act
int result = sut.Echo(expectedNumber);
// Assert
Assert.Equal(expectedNumber, result);
}
这个示例演示了 AutoFixture 的基本原理:它可以创建任何类型的值,而无需您显式定义应使用哪些值。数字 expectedNumber 是通过调用 Create<T> 创建的,这将创建一个 '好' 的、规则的整数值,节省您 explicit 定义一个值的努力。
3. 项目API使用文档
AutoFixture 提供了丰富的 API,以下是一些基本的使用方法:
Create<T>(): 创建类型为T的一个新实例。CreateMany<T>(): 创建类型为T的多个实例的序列。Customize<T>(): 对类型为T的生成的值进行自定义。
例如,要创建一个整数数组,您可以使用 CreateMany<T>() 方法:
var numbers = fixture.CreateMany<int>().ToArray();
若要对生成的对象进行自定义,您可以使用 Customize<T>() 方法:
fixture.Customize<MyClass>(custom => custom.With(x => x.Property, "自定义值"));
4. 项目安装方式
项目的安装方式已在 "安装指南" 部分详细说明。您可以通过 NuGet 包管理器或者直接修改项目文件来安装 AutoFixture。请参考以下代码:
通过 .NET CLI:
dotnet add package AutoFixture
或在项目文件中添加:
<PackageReference Include="AutoFixture" Version="最新版本" />
确保将 "最新版本" 替换为实际可用的最新稳定版本号。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00