NumPyro中HMC和NUTS采样器参数空间转换机制解析
2025-07-01 17:40:48作者:俞予舒Fleming
概述
在使用NumPyro进行贝叶斯建模时,理解采样过程中参数在不同空间(约束空间与非约束空间)的转换机制至关重要。本文将深入探讨NumPyro中HMC和NUTS采样器的参数空间转换行为,帮助用户正确理解和使用采样结果。
参数空间的基本概念
在贝叶斯建模中,参数通常有特定的约束条件(如正数、区间等)。为了高效采样,HMC和NUTS算法通常在无约束的空间(unconstrained space)中操作,然后通过变换函数将结果映射回原始约束空间(constrained space)。
NumPyro中:
- 约束空间:符合模型定义中参数的实际分布支持域
- 非约束空间:算法内部使用的无约束实数空间
NumPyro的实现机制
在NumPyro的MCMC采样过程中,存在两个关键状态:
- HMCState.z:采样器内部使用的非约束空间参数值
- MCMC结果:通过
get_samples()获取的约束空间参数值
采样过程可以描述为:
- 算法在非约束空间中进行采样
- 采样完成后,结果被自动转换回约束空间
- 最终用户获取的是约束空间的值
实际应用中的注意事项
对于需要访问非约束空间参数值的场景,可以通过以下方式实现:
# 定义模型
def model(x, yerr, y=None):
m = numpyro.sample('m', dist.TruncatedNormal(low=0.0))
b = numpyro.sample('b', dist.Normal())
y_model = m * x + b
numpyro.sample('obs', dist.Normal(y_model, yerr), obs=y)
# 获取非约束空间参数值
_unconstrain_fn = partial(infer.util.unconstrain_fn,
model,
(x, sigma),
{'y': y})
unconstrained_params = _unconstrain_fn(samples)
典型应用场景
- 诊断分析:检查非约束空间的采样轨迹可以帮助识别采样问题
- 高级算法开发:自定义采样器可能需要直接操作非约束参数
- 转换验证:确保约束/非约束转换的正确性
总结
理解NumPyro中参数空间的转换机制对于正确使用MCMC采样结果至关重要。虽然最终结果默认返回约束空间的值,但通过适当的工具函数可以访问非约束空间的参数值。这种设计既保证了用户友好性,又为高级应用提供了灵活性。
建议用户在进行复杂分析时,明确区分两种空间的参数值,并根据实际需求选择合适的形式进行处理。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259