ColabFold在ARM架构下的LLVM错误解决方案
问题背景
在ARM架构(aarch64)的服务器上运行ColabFold时,用户遇到了一个LLVM错误。具体表现为在执行蛋白质结构预测时,系统报出"LLVM ERROR: Cannot select"的错误信息,导致程序异常终止。
错误分析
该错误发生在TensorFlow环境下,当尝试执行浮点运算操作时,LLVM编译器无法正确选择指令集进行优化。从错误堆栈可以看出,问题出现在bf16(Brain Floating Point 16)格式的向量运算处理上,这通常与硬件加速指令集的支持有关。
根本原因
ColabFold的核心计算主要依赖于JAX库进行GPU加速,而TensorFlow仅用于部分辅助功能。当在ARM架构上使用TensorFlow GPU版本时,可能会引发与硬件加速指令集不兼容的问题,特别是对于某些特殊浮点格式(如bf16)的处理。
解决方案
-
使用JAX基础容器:推荐使用NVIDIA官方提供的JAX容器镜像,而非TensorFlow容器。例如:
nvcr.io/nvidia/jax:24.04-py3 -
安装必要依赖:在容器内执行以下命令安装关键组件:
pip install tensorflow jax[cuda12]
技术建议
-
架构兼容性:在ARM架构上部署深度学习应用时,应特别注意各组件对ARM指令集的支持情况。
-
组件选择:对于ColabFold这类以JAX为核心计算引擎的应用,优先保证JAX环境的正确配置比TensorFlow更为重要。
-
容器选择:NVIDIA官方提供的JAX容器已经针对ARM架构和GPU加速进行了优化,能更好地处理各种浮点运算场景。
实施效果
采用上述解决方案后,ColabFold能够在ARM架构的服务器上正常运行,不再出现LLVM相关的错误,成功完成蛋白质结构预测任务。
总结
在异构计算环境中部署科学计算软件时,选择合适的底层计算框架和容器环境至关重要。对于ColabFold而言,基于JAX的容器环境比TensorFlow容器更能保证在ARM架构上的稳定运行。这一经验也适用于其他依赖JAX或需要跨架构部署的深度学习应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00